Running minimum in the best-choice problem

被引:0
|
作者
Alexander Gnedin
Patryk Kozieł
Małgorzata Sulkowska
机构
[1] Queen Mary University of London,School of Mathematical Sciences
[2] Wrocław University of Science and Technology,undefined
[3] Department of Fundamentals of Computer Science,undefined
[4] Université Côte d’Azur,undefined
[5] CNRS,undefined
[6] Inria,undefined
[7] I3S,undefined
来源
Extremes | 2023年 / 26卷
关键词
Best-choice problem; Running minimum process; Poisson point process; Full-information problem; Primary 60G40; Secondary 60G55;
D O I
暂无
中图分类号
学科分类号
摘要
The full-information best choice problem asks one to find a strategy maximising the probability of stopping at the minimum (or maximum) of a sequence X1,⋯,Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1,\cdots ,X_n$$\end{document} of i.i.d. random variables with continuous distribution. In this paper we look at more general models, where independent Xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_j$$\end{document}’s may have different distributions, discrete or continuous. A central role in our study is played by the running minimum process, which we first employ to re-visit the classic problem and its limit Poisson counterpart. The approach is further applied to two explicitly solvable models: in the first the distribution of the jth variable is uniform on {j,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{j,\cdots ,n\}$$\end{document}, and in the second it is uniform on {1,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\cdots , n\}$$\end{document}.
引用
收藏
页码:157 / 182
页数:25
相关论文
共 50 条
  • [21] The full-information best-choice problem with uniform or gamma horizons
    Bendersky, Michael
    David, Israel
    OPTIMIZATION, 2016, 65 (04) : 765 - 778
  • [22] Optimal shopping when the sales are on - A markovian full-information best-choice problem
    Parlar, Mahmut
    Perry, David
    Stadje, Wolfgang
    STOCHASTIC MODELS, 2007, 23 (03) : 351 - 371
  • [23] Best-choice games where arbitration comes in
    Sakaguchi, M
    GAME THEORY AND APPLICATIONS, VOL IX, 2003, : 141 - 149
  • [24] N-person best-choice game with voting
    Mazalov, VV
    Banin, MV
    GAME THEORY AND APPLICATIONS, VOL IX, 2003, : 45 - 53
  • [25] Best-choice topology: An optimized array-based maximum finder
    Prvan M.
    Ožegović J.
    Sočo I.
    Čoko D.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (12): : 17 - 26
  • [26] A non-zero-sum no-information best-choice game
    Sakaguchi, M
    Mazalov, VV
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 60 (03) : 437 - 451
  • [28] Optimal stopping with random horizon with application to the full-information best-choice problem with random freeze
    SamuelCahn, E
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 357 - 364
  • [29] MINIMAX-OPTIMAL STRATEGIES FOR THE BEST-CHOICE PROBLEM WHEN A BOUND IS KNOWN FOR THE EXPECTED NUMBER OF OBJECTS
    HILL, TP
    KENNEDY, DP
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (04) : 937 - 951
  • [30] Optimal Strategies in Best-Choice Game with Incomplete Information: The Voice Show
    Mazalov, Vladimir V.
    Ivashko, Anna A.
    Konovalchikova, Elena N.
    INTERNATIONAL GAME THEORY REVIEW, 2016, 18 (02)