共 50 条
Running minimum in the best-choice problem
被引:0
|作者:
Alexander Gnedin
Patryk Kozieł
Małgorzata Sulkowska
机构:
[1] Queen Mary University of London,School of Mathematical Sciences
[2] Wrocław University of Science and Technology,undefined
[3] Department of Fundamentals of Computer Science,undefined
[4] Université Côte d’Azur,undefined
[5] CNRS,undefined
[6] Inria,undefined
[7] I3S,undefined
来源:
关键词:
Best-choice problem;
Running minimum process;
Poisson point process;
Full-information problem;
Primary 60G40;
Secondary 60G55;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The full-information best choice problem asks one to find a strategy maximising the probability of stopping at the minimum (or maximum) of a sequence X1,⋯,Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_1,\cdots ,X_n$$\end{document} of i.i.d. random variables with continuous distribution. In this paper we look at more general models, where independent Xj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_j$$\end{document}’s may have different distributions, discrete or continuous. A central role in our study is played by the running minimum process, which we first employ to re-visit the classic problem and its limit Poisson counterpart. The approach is further applied to two explicitly solvable models: in the first the distribution of the jth variable is uniform on {j,⋯,n}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{j,\cdots ,n\}$$\end{document}, and in the second it is uniform on {1,⋯,n}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{1,\cdots , n\}$$\end{document}.
引用
收藏
页码:157 / 182
页数:25
相关论文