Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem

被引:0
|
作者
Fei Cong
Cornelis W. Oosterlee
机构
[1] Delft Institute of Applied Mathematics,
[2] TU Delft,undefined
[3] CWI-Centrum Wiskunde & Informatica,undefined
来源
Computational Economics | 2017年 / 49卷
关键词
Dynamic portfolio management; Simulation method; Least-square regression; Taylor expansion; Fourier cosine expansion method;
D O I
暂无
中图分类号
学科分类号
摘要
This paper enhances a well-known dynamic portfolio management algorithm, the BGSS algorithm, proposed by Brandt et al. (Review of Financial Studies, 18(3):831–873, 2005). We equip this algorithm with the components from a recently developed method, the Stochastic Grid Bundling Method (SGBM), for calculating conditional expectations. When solving the first-order conditions for a portfolio optimum, we implement a Taylor series expansion based on a nonlinear decomposition to approximate the utility functions. In the numerical tests, we show that our algorithm is accurate and robust in approximating the optimal investment strategies, which are generated by a new benchmark approach based on the COS method (Fang and Oosterlee, in SIAM Journal of Scientific Computing, 31(2):826–848, 2008).
引用
收藏
页码:433 / 458
页数:25
相关论文
共 50 条
  • [21] Robust asset allocation, series "Portfolio Management"
    Rilinger, Carsten
    BETRIEBSWIRTSCHAFTLICHE FORSCHUNG UND PRAXIS, 2008, 60 (05): : 519 - 520
  • [22] Development of Robust Random Variable for Portfolio Selection Problem
    Ghahtarani, Alireza
    Sheikhmohammady, Majid
    Najafi, Amir Abbas
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2018, 17 (04): : 632 - 641
  • [23] α-ROBUST PORTFOLIO OPTIMIZATION PROBLEM UNDER THE DISTRIBUTION UNCERTAINTY
    DI, Shihan
    Ma, Dong
    Zhao, Peibiao
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (04) : 2528 - 2548
  • [24] Robust optimization framework for cardinality constrained portfolio problem
    Sadjadi, Seyed Jafar
    Gharakhani, Mohsen
    Safari, Ehram
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 91 - 99
  • [25] Robust portfolio selection problem under temperature uncertainty
    Gulpinar, Nalan
    Canakoglu, Ethem
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (02) : 500 - 523
  • [26] Numerical methods for portfolio selection with bounded constraints
    Yin, G.
    Jin, Hanqing
    Jin, Zhuo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 564 - 581
  • [27] Simulation and numerical methods for solution of the dynamic disequilibrium network design problem
    Friesz, TL
    Cho, HJ
    Peeta, S
    Kydes, NA
    TRAFFIC AND TRANSPORTATION STUDIES, VOLS 1 AND 2, PROCEEDINGS, 2002, : 754 - 761
  • [28] OPERATOR SPLIT METHODS FOR THE NUMERICAL-SOLUTION OF THE ELASTOPLASTIC DYNAMIC PROBLEM
    ORTIZ, M
    PINSKY, PM
    TAYLOR, RL
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1983, 39 (02) : 137 - 157
  • [29] Optimal Dynamic Portfolio Risk Management
    Zakamulin, Valeriy
    JOURNAL OF PORTFOLIO MANAGEMENT, 2016, 43 (01): : 85 - 99
  • [30] DYNAMIC MODEL FOR BOND PORTFOLIO MANAGEMENT
    BRADLEY, SP
    CRANE, DB
    MANAGEMENT SCIENCE SERIES B-APPLICATION, 1972, 19 (02): : 139 - 151