Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem

被引:0
|
作者
Fei Cong
Cornelis W. Oosterlee
机构
[1] Delft Institute of Applied Mathematics,
[2] TU Delft,undefined
[3] CWI-Centrum Wiskunde & Informatica,undefined
来源
Computational Economics | 2017年 / 49卷
关键词
Dynamic portfolio management; Simulation method; Least-square regression; Taylor expansion; Fourier cosine expansion method;
D O I
暂无
中图分类号
学科分类号
摘要
This paper enhances a well-known dynamic portfolio management algorithm, the BGSS algorithm, proposed by Brandt et al. (Review of Financial Studies, 18(3):831–873, 2005). We equip this algorithm with the components from a recently developed method, the Stochastic Grid Bundling Method (SGBM), for calculating conditional expectations. When solving the first-order conditions for a portfolio optimum, we implement a Taylor series expansion based on a nonlinear decomposition to approximate the utility functions. In the numerical tests, we show that our algorithm is accurate and robust in approximating the optimal investment strategies, which are generated by a new benchmark approach based on the COS method (Fang and Oosterlee, in SIAM Journal of Scientific Computing, 31(2):826–848, 2008).
引用
收藏
页码:433 / 458
页数:25
相关论文
共 50 条
  • [1] Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem
    Cong, Fei
    Oosterlee, Cornelis W.
    COMPUTATIONAL ECONOMICS, 2017, 49 (03) : 433 - 458
  • [2] The Minimal Ellipsoid and Robust Methods in the Optimal Portfolio Problem
    Danilova, N.
    Yao, K.
    ENGINEERING LETTERS, 2022, 30 (04) : 1465 - 1469
  • [3] Highly accurate and efficient numerical methods for a problem of heat conduction
    Cho, Manki
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (11) : 3410 - 3417
  • [4] Robust international portfolio management
    Raquel J. Fonseca
    Wolfram Wiesemann
    Berç Rustem
    Computational Management Science, 2012, 9 (1) : 31 - 62
  • [5] Robust international portfolio management
    Fonseca, Raquel J.
    Wiesemann, Wolfram
    Rustem, Berc
    COMPUTATIONAL MANAGEMENT SCIENCE, 2012, 9 (01) : 31 - 62
  • [6] On loss-avoiding payoff distribution in a dynamic portfolio management problem
    Krawczyk, Jacek B.
    JOURNAL OF RISK FINANCE, 2008, 9 (02) : 151 - 172
  • [7] The optimal dynamic robust portfolio model
    Yu, X. (hnyuxing@163.com), 1600, Transport and Telecommunication Institute, Lomonosova street 1, Riga, LV-1019, Latvia (18):
  • [8] Dynamic robust portfolio selection with copulas
    Han, Yingwei
    Li, Ping
    Xia, Yong
    FINANCE RESEARCH LETTERS, 2017, 21 : 190 - 200
  • [9] Towards Robust IT Service Portfolio Management
    Trastour, David
    Christodoulou, Athena
    INTEGRATED MANAGEMENT OF SYSTEMS, SERVICES, PROCESSES AND PEOPLE IN IT, PROCEEDINGS, 2009, 5841 : 152 - 163
  • [10] A Maximum Entropy Method for a Robust Portfolio Problem
    Xu, Yingying
    Wu, Zhuwu
    Jiang, Long
    Song, Xuefeng
    ENTROPY, 2014, 16 (06) : 3401 - 3415