Sequent period-(2m − 1) motions to chaos in the van der Pol oscillator

被引:1
|
作者
Xu Y. [1 ]
Luo A.C.J. [1 ]
机构
[1] Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, 62026-1805, IL
来源
关键词
Bifurcation; Frequency–amplitude characteristics; Periodic motion sequence; Stability; Van der Pol oscillator;
D O I
10.1007/s40435-018-0468-1
中图分类号
学科分类号
摘要
In this paper, independent, symmetric, periodic motions in a van der Pol oscillator are predicted through a semi-analytical method. This semi-analytic method is based on the discretization of the corresponding continuous nonlinear system for an implicit mapping. Through the implicit mapping structures, stable and unstable periodic motions are obtained analytically. A sequence of periodic motions to chaos via 1(S) ◁ 3(S) ◁ ··· ◁ (2m − 1)(S) ◁ ··· is discovered. The stability and bifurcations of periodic motions are determined through eigenvalue analysis. The frequency–amplitude characteristics of periodic motions are discussed. Numerical simulations of the periodic motions are carried out for comparison of numerical and analytical results. Such a periodic motion sequence is for a better understanding of dynamics of the van der Pol oscillator. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:795 / 807
页数:12
相关论文
共 50 条
  • [41] Bifurcation and chaos in the double-well Duffing-van der Pol oscillator: Numerical and analytical studies
    Venkatesan, A
    Lakshmanan, M
    PHYSICAL REVIEW E, 1997, 56 (06) : 6321 - 6330
  • [42] Investigation of chaos and memory effects in the Bonhoeffer-van der Pol oscillator with a non-ideal capacitor
    Brechtl, Jamieson
    Xie, Xie
    Liaw, Peter K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 73 : 195 - 216
  • [43] Period-doubling cascades of canards from the extended Bonhoeffer-van der Pol oscillator
    Sekikawa, Munehisa
    Inaba, Naohiko
    Yoshinaga, Tetsuya
    Hikihara, Takashi
    PHYSICS LETTERS A, 2010, 374 (36) : 3745 - 3751
  • [44] CONTROLLING OF CHAOTIC MOTION BY CHAOS AND NOISE SIGNALS IN A LOGISTIC MAP AND A BONHOEFFER-VAN DER POL OSCILLATOR
    RAJASEKAR, S
    PHYSICAL REVIEW E, 1995, 51 (01): : 775 - 778
  • [45] Period-Doubling Cascades and Strange Attractors in Extended Duffing-Van der Pol Oscillator
    YU Jun PAN Wei-Zhen ZHANG Rong-Bo Institute of Nonlinear Science
    CommunicationsinTheoreticalPhysics, 2009, 51 (05) : 865 - 868
  • [46] Period-doubling Cascades and Strange Attractors in Extended Duffing-Van der Pol Oscillator
    Yu Jun
    Pan Wei-Zhen
    Zhang Rong-Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) : 865 - 868
  • [47] 2:1 and 1:1 frequency-locking in fast excited van der Pol–Mathieu–Duffing oscillator
    Mohamed Belhaq
    Abdelhak Fahsi
    Nonlinear Dynamics, 2008, 53 : 139 - 152
  • [48] Oscillations and hysteresis: from simple harmonic oscillator and unusual unbounded increasing amplitude phenomena to the van der Pol oscillator and chaos control
    Semenov, Mikhail E.
    Reshetova, Olga O.
    Meleshenko, Peter A.
    Klinskikh, Alexander F.
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2020, 11 (04) : 147 - 159
  • [49] Reversal of period doubling, multistability and symmetry breaking aspects for a system composed of a van der pol oscillator coupled to a duffing oscillator
    Ramadoss, Janarthanan
    Kengne, Jacques
    Tanekou, Sosthene Tsamene
    Rajagopal, Karthikeyan
    Kenmoe, Germaine Djuidje
    CHAOS SOLITONS & FRACTALS, 2022, 159
  • [50] Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks
    Zhou, Liang-qiang
    Chen, Fang-qi
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (04): : 1111 - 1126