Sequent period-(2m − 1) motions to chaos in the van der Pol oscillator

被引:1
|
作者
Xu Y. [1 ]
Luo A.C.J. [1 ]
机构
[1] Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, 62026-1805, IL
来源
关键词
Bifurcation; Frequency–amplitude characteristics; Periodic motion sequence; Stability; Van der Pol oscillator;
D O I
10.1007/s40435-018-0468-1
中图分类号
学科分类号
摘要
In this paper, independent, symmetric, periodic motions in a van der Pol oscillator are predicted through a semi-analytical method. This semi-analytic method is based on the discretization of the corresponding continuous nonlinear system for an implicit mapping. Through the implicit mapping structures, stable and unstable periodic motions are obtained analytically. A sequence of periodic motions to chaos via 1(S) ◁ 3(S) ◁ ··· ◁ (2m − 1)(S) ◁ ··· is discovered. The stability and bifurcations of periodic motions are determined through eigenvalue analysis. The frequency–amplitude characteristics of periodic motions are discussed. Numerical simulations of the periodic motions are carried out for comparison of numerical and analytical results. Such a periodic motion sequence is for a better understanding of dynamics of the van der Pol oscillator. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:795 / 807
页数:12
相关论文
共 50 条
  • [21] Chaotic Motions of the Duffing-Van der Pol Oscillator with External and Parametric Excitations
    Zhou, Liangqiang
    Chen, Fangqi
    SHOCK AND VIBRATION, 2014, 2014
  • [22] Chaos Synchronization of the Modified Van der Pol-Duffing Oscillator of Fractional Order
    Buslowicz, Mikolaj
    Makarewicz, Adam
    RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 : 33 - 43
  • [23] Chaos, antimonotonicity and coexisting attractors in Van der Pol oscillator based electronic circuit
    De Sarkar, Saumendra Sankar
    Sharma, Ajay Kumar
    Chakraborty, Saumen
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2022, 110 (02) : 211 - 229
  • [24] Chaos control of a φ6-Van der Pol oscillator driven by external excitation
    Dasheng Liu
    Hiroshi Yamaura
    Nonlinear Dynamics, 2012, 68 : 95 - 105
  • [25] CONTROLLING OF CHAOS BY WEAK PERIODIC PERTURBATIONS IN DUFFING-VAN DER POL OSCILLATOR
    RAJASEKAR, S
    PRAMANA-JOURNAL OF PHYSICS, 1993, 41 (04): : 295 - 309
  • [26] Geometrical resonance analysis of chaos suppression in the bichromatically driven van der Pol oscillator
    Chacon, R
    Sanchez, M
    Martinez, JA
    PHYSICAL REVIEW E, 1997, 56 (02): : 1541 - 1549
  • [27] Chaos, antimonotonicity and coexisting attractors in Van der Pol oscillator based electronic circuit
    Saumendra Sankar De Sarkar
    Ajay Kumar Sharma
    Saumen Chakraborty
    Analog Integrated Circuits and Signal Processing, 2022, 110 : 211 - 229
  • [28] Chaos control of a φ6-Van der Pol oscillator driven by external excitation
    Liu, Dasheng
    Yamaura, Hiroshi
    NONLINEAR DYNAMICS, 2012, 68 (1-2) : 95 - 105
  • [29] Chaos control of Bonhoeffer-van der Pol oscillator using neural networks
    Ramesh, M
    Narayanan, S
    CHAOS SOLITONS & FRACTALS, 2001, 12 (13) : 2395 - 2405
  • [30] Frequency-amplitude characteristics of periodic motions in a periodically forced van der Pol oscillator
    Xu, Yeyin
    Luo, Albert C. J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (09): : 1839 - 1854