Data based regularization for discrete deconvolution problems

被引:0
|
作者
T. Huckle
M. Sedlacek
机构
[1] Technische Universität München,Fakultät für Informatik
来源
BIT Numerical Mathematics | 2013年 / 53卷
关键词
Tikhonov-Phillips; TSVD; CGLS; Ill-posed inverse problems; 65F22; 65F08; 65R30;
D O I
暂无
中图分类号
学科分类号
摘要
We focus on the solution of discrete deconvolution problems to recover the original information from blurred signals in the presence of Gaussian white noise more accurately. For a certain class of blur operators and signals we develop a diagonal preconditioner to improve the reconstruction quality, both for direct and iterative regularization methods. In this respect, we incorporate the variation of the signal data during the construction of the preconditioner. Embedding this method in an outer iteration may yield further improvement of the solution. Numerical examples demonstrate the effect of the presented approach.
引用
收藏
页码:459 / 473
页数:14
相关论文
共 50 条
  • [41] The Lagrange method for the regularization of discrete ill-posed problems
    G. Landi
    Computational Optimization and Applications, 2008, 39 : 347 - 368
  • [42] On the filtering effect of iterative regularization algorithms for discrete inverse problems
    Cornelio, A.
    Porta, F.
    Prato, M.
    Zanni, L.
    INVERSE PROBLEMS, 2013, 29 (12)
  • [43] Regularization and stabilization of discrete saddle-point variational problems
    Bochev, PB
    Lehoucq, RB
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 22 : 97 - 113
  • [44] Perturbation-based regularization for signal estimation in linear discrete ill-posed problems
    Suliman, Mohamed A.
    Ballal, Tarig
    Al-Naffouri, Tareq Y.
    SIGNAL PROCESSING, 2018, 152 : 35 - 46
  • [45] Regularization parameter determination for discrete ill-posed problems
    Hochstenbach, M. E.
    Reichel, L.
    Rodriguez, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 132 - 149
  • [46] THE DISCRETE REGULARIZATION OF PROBLEMS WITH ARBITRARILY PERTURBED MONOTONE-OPERATORS
    LISKOVETS, OA
    DOKLADY AKADEMII NAUK SSSR, 1986, 289 (05): : 1056 - 1059
  • [48] Regularization and Error Estimate for the Poisson Equation with Discrete Data
    Nguyen Anh Triet
    Nguyen Duc Phuong
    Van Thinh Nguyen
    Can Nguyen-Huu
    MATHEMATICS, 2019, 7 (05)
  • [49] Regularization of geodynamic problems using geological data
    Kotelkin, V. D.
    Lobkovskii, L. I.
    FLUID DYNAMICS, 2014, 49 (03) : 310 - 319
  • [50] Convergence and optimality of adaptive regularization for Ill-posed deconvolution problems in infinite spaces
    Wang Y.-F.
    Ma Q.-H.
    Acta Mathematicae Applicatae Sinica, 2006, 22 (3) : 429 - 436