Data based regularization for discrete deconvolution problems

被引:0
|
作者
T. Huckle
M. Sedlacek
机构
[1] Technische Universität München,Fakultät für Informatik
来源
BIT Numerical Mathematics | 2013年 / 53卷
关键词
Tikhonov-Phillips; TSVD; CGLS; Ill-posed inverse problems; 65F22; 65F08; 65R30;
D O I
暂无
中图分类号
学科分类号
摘要
We focus on the solution of discrete deconvolution problems to recover the original information from blurred signals in the presence of Gaussian white noise more accurately. For a certain class of blur operators and signals we develop a diagonal preconditioner to improve the reconstruction quality, both for direct and iterative regularization methods. In this respect, we incorporate the variation of the signal data during the construction of the preconditioner. Embedding this method in an outer iteration may yield further improvement of the solution. Numerical examples demonstrate the effect of the presented approach.
引用
收藏
页码:459 / 473
页数:14
相关论文
共 50 条
  • [21] Image deconvolution using wavelet-based regularization
    Shen, LX
    JOURNAL OF ELECTRONIC IMAGING, 2002, 11 (01) : 5 - 10
  • [22] A Novel Sparse Deconvolution Algorithm Based on Iterative Regularization
    Pang, Bo
    Xing, Shiqi
    Dai, Dahai
    Li, Yongzhen
    Wang, Xuesong
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 1592 - 1596
  • [23] A Sparsity-Based Regularization Approach for Deconvolution of Full-Waveform Airborne Lidar Data
    Azadbakht, Mohsen
    Fraser, Clive S.
    Khoshelham, Kourosh
    REMOTE SENSING, 2016, 8 (08)
  • [24] Deconvolution methods based on φHL regularization for spectral recovery
    Zhu, Hu
    Deng, Lizhen
    Bai, Xiaodong
    Li, Meng
    Cheng, Zhao
    APPLIED OPTICS, 2015, 54 (14) : 4337 - 4344
  • [25] A segmentation-based regularization term for image deconvolution
    Mignotte, Max
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (07) : 1973 - 1984
  • [26] Sparse regularization-based ultrasound signal deconvolution
    Wen, Q.-N., 1600, Univ. of Electronic Science and Technology of China (42):
  • [27] A Regularization Parameter in Discrete III-Posed Problems
    Reginska, T.
    SIAM Journal on Scientific Computing, 17 (03):
  • [28] Convex Regularization of Discrete-Valued Inverse Problems
    Clason, Christian
    Thi Bich Tram Do
    NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 31 - 51
  • [29] A regularization parameter in discrete ill-posed problems
    Reginska, T
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03): : 740 - 749
  • [30] DISCRETE SCHEMES IN THE REGULARIZATION ON METHOD FOR INCORRECT EXTREMUM PROBLEMS
    LISKOVETS, OA
    DOKLADY AKADEMII NAUK SSSR, 1979, 248 (06): : 1299 - 1303