Finite sets and infinite sets in weak intuitionistic arithmetic

被引:0
|
作者
Takako Nemoto
机构
[1] Japan Advanced Institute of Science and Technology,School of Information Science
来源
关键词
Constructive mathematics; Constructive reverse mathematics; First order arithmetic; Induction principles; Non-constructive principles; 03F50; 03F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider, for a set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of natural numbers, the following notions of finitenessThere are a natural number l and a bijection f between {x∈N:x<l}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ x\in \mathbb {N}:x<l\}$$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is an upper bound for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is l such that ∀B⊆A(|B|<l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|<l)$$\end{document};It is not the case that ∀y(∃x>y)(x∈A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall y(\exists x>y)(x\in \mathcal {A})$$\end{document};It is not the case that ∀l∃B⊆A(|B|=l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall l\exists \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|=l)$$\end{document}, and infinitenessThere are not a natural number l and a bijection f between {x∈N:x<l}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ x\in \mathbb {N}:x<l\}$$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is no upper bound for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is no l such that ∀B⊆A(|B|<l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|<l)$$\end{document};∀y(∃x>y)(x∈A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall y(\exists x>y)(x\in \mathcal {A})$$\end{document};∀l∃B⊆A(|B|=l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall l\exists \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|=l)$$\end{document}. In this paper, we systematically compare them in the method of constructive reverse mathematics. We show that the equivalence among them can be characterized by various combinations of induction axioms and non-constructive principles, including the axiom of bounded comprehension.
引用
收藏
页码:607 / 657
页数:50
相关论文
共 50 条
  • [41] EFFECTIVE CONSTRUCTIONS OF CUTSETS FOR FINITE AND INFINITE ORDERED SETS
    RIVAL, I
    ZAGUIA, N
    ACTA SCIENTIARUM MATHEMATICARUM, 1987, 51 (1-2): : 191 - 207
  • [42] The dimension of the kernel in finite and infinite intersections of starshaped sets
    Breen M.
    aequationes mathematicae, 2004, 67 (3) : 263 - 275
  • [43] Unification for infinite sets of equations between finite terms
    Fokkink, W
    INFORMATION PROCESSING LETTERS, 1997, 62 (04) : 183 - 188
  • [44] Level sets and the representation theorem for intuitionistic fuzzy sets
    Yager, Ronald R.
    SOFT COMPUTING, 2010, 14 (01) : 1 - 7
  • [45] Intuitionistic fuzzy sets and L-fuzzy sets
    Wang, GJ
    He, YY
    FUZZY SETS AND SYSTEMS, 2000, 110 (02) : 271 - 274
  • [46] L-fuzzy sets and intuitionistic fuzzy sets
    Hatzimichailidis, Anestis G.
    Papadopoulos, Basil K.
    COMPUTATIONAL INTELLIGENCE BASED ON LATTICE THEORY, 2007, 67 : 325 - +
  • [47] Sufficient Conditions of Cut Sets on Intuitionistic Fuzzy Sets
    Shi, Yiying
    Yuan, Xuehai
    Zhang, Yuchun
    Zhang, Yuhong
    FUZZY SYSTEMS & OPERATIONS RESEARCH AND MANAGEMENT, 2016, 367 : 85 - 95
  • [48] Level sets and the representation theorem for intuitionistic fuzzy sets
    Ronald R. Yager
    Soft Computing, 2010, 14 : 1 - 7
  • [49] MUTUAL POSITION OF SETS WHERE DERIVATIVE IS FINITE AND INFINITE
    KAPLAN, LI
    SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (04) : 570 - 581
  • [50] Non-fuzzy sets for intuitionistic fuzzy sets
    Tuan, Han-Wen
    Chao, Henry Chung-Jen
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (7-8): : 1509 - 1514