Finite sets and infinite sets in weak intuitionistic arithmetic

被引:0
|
作者
Takako Nemoto
机构
[1] Japan Advanced Institute of Science and Technology,School of Information Science
来源
关键词
Constructive mathematics; Constructive reverse mathematics; First order arithmetic; Induction principles; Non-constructive principles; 03F50; 03F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider, for a set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of natural numbers, the following notions of finitenessThere are a natural number l and a bijection f between {x∈N:x<l}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ x\in \mathbb {N}:x<l\}$$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is an upper bound for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is l such that ∀B⊆A(|B|<l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|<l)$$\end{document};It is not the case that ∀y(∃x>y)(x∈A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall y(\exists x>y)(x\in \mathcal {A})$$\end{document};It is not the case that ∀l∃B⊆A(|B|=l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall l\exists \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|=l)$$\end{document}, and infinitenessThere are not a natural number l and a bijection f between {x∈N:x<l}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ x\in \mathbb {N}:x<l\}$$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is no upper bound for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document};There is no l such that ∀B⊆A(|B|<l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|<l)$$\end{document};∀y(∃x>y)(x∈A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall y(\exists x>y)(x\in \mathcal {A})$$\end{document};∀l∃B⊆A(|B|=l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\forall l\exists \mathcal {B}\subseteq \mathcal {A}(|\mathcal {B}|=l)$$\end{document}. In this paper, we systematically compare them in the method of constructive reverse mathematics. We show that the equivalence among them can be characterized by various combinations of induction axioms and non-constructive principles, including the axiom of bounded comprehension.
引用
收藏
页码:607 / 657
页数:50
相关论文
共 50 条
  • [21] NECESSARY CONDITIONS FOR FINITE CRITICAL SETS. MAPS WITH INFINITE CRITICAL SETS
    Peter, Ioan Radu
    Pintea, Cornel
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) : 739 - 749
  • [22] INTERPOLATION BY SPLINES ON FINITE AND INFINITE PLANAR SETS
    陈翰麟
    ChineseAnnalsofMathematics, 1984, (03) : 375 - 390
  • [23] ON FINITE FIXED SETS IN INFINITE-GRAPHS
    JUNG, HA
    DISCRETE MATHEMATICS, 1994, 131 (1-3) : 115 - 125
  • [24] The theory of intuitionistic fuzzy sets based on the intuitionistic fuzzy special sets
    Yuan, Xue-hai
    Li, Hong-xing
    Zhang, Cheng
    INFORMATION SCIENCES, 2014, 277 : 284 - 298
  • [25] BIPOLAR FUZZY SETS ARE INTUITIONISTIC FUZZY SETS
    Atanassov, Krassimir T.
    Kacprzyk, Janusz
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (12): : 1752 - 1756
  • [26] Arithmetic of Finite Ordered Sets: Cancellation of Exponents, II
    Ralph McKenzie
    Order, 2000, 17 : 309 - 332
  • [27] Arithmetic of Finite Ordered Sets: Cancellation of Exponents, I
    Ralph McKenzie
    Order, 1999, 16 : 313 - 333
  • [28] On Arithmetic Computations with Hereditarily Finite Sets, Functions and Types
    Tarau, Paul
    THEORETICAL ASPECTS OF COMPUTING, 2010, 6255 : 367 - 381
  • [29] On arithmetic progressions in symmetric sets in finite field model
    Hazla, Jan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 24
  • [30] Arithmetic of finite ordered sets: Cancellation of exponents, II
    McKenzie, R
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2000, 17 (04): : 309 - 332