Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

被引:2
|
作者
Huadong Gao
Dongdong He
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Tongji University,School of Aerospace Engineering and Applied Mechanics
来源
关键词
Nernst–Planck–Poisson equations; Finite element methods; Unconditional convergence; Optimal error estimate; Conservative schemes; 65N12; 65N30; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst–Planck–Poisson equations. For the linearized backward Euler FEM, an optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error estimate is provided almost unconditionally (i.e., when the mesh size h and time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.
引用
收藏
页码:1269 / 1289
页数:20
相关论文
共 50 条
  • [41] A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 363 - 376
  • [42] Some Random Batch Particle Methods for the Poisson-Nernst-Planck and Poisson-Boltzmann Equations
    Li, Lei
    Liu, Jian-Guo
    Tang, Yijia
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (01) : 41 - 82
  • [43] Activity Based Finite Volume Methods for Generalised Nernst-Planck-Poisson Systems
    Fuhrmann, Juergen
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7, 2014, 78 : 597 - 605
  • [44] Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer
    Lim, Jongil
    Whitcomb, John
    Boyd, James
    Varghese, Julian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 305 (01) : 159 - 174
  • [45] Discontinuous bubble immersed finite element method for Poisson-Boltzmann-Nernst-Planck model
    Kwon, In
    Kwak, Do Y.
    Jo, Gwanghyun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 438
  • [46] A new block preconditioner and improved finite element solver of Poisson-Nernst-Planck equation
    Ying, Jinyong
    Fan, Ronghong
    Li, Jiao
    Lu, Benzhuo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 430
  • [47] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [48] BREAKDOWN OF A STATIONARY SOLUTION TO THE NERNST-PLANCK-POISSON EQUATIONS
    RUBINSTEIN, I
    SEGEL, LA
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1979, 75 : 936 - 940
  • [49] A meshless stochastic method for Poisson-Nernst-Planck equations
    Monteiro, Henrique B. N.
    Tartakovsky, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [50] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889