Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

被引:2
|
作者
Huadong Gao
Dongdong He
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Tongji University,School of Aerospace Engineering and Applied Mechanics
来源
关键词
Nernst–Planck–Poisson equations; Finite element methods; Unconditional convergence; Optimal error estimate; Conservative schemes; 65N12; 65N30; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst–Planck–Poisson equations. For the linearized backward Euler FEM, an optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error estimate is provided almost unconditionally (i.e., when the mesh size h and time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.
引用
收藏
页码:1269 / 1289
页数:20
相关论文
共 50 条
  • [21] A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids
    Mirzadeh, Mohammad
    Gibou, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 633 - 653
  • [22] An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
    Yang, Ying
    Lu, Benzhuo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 113 - 130
  • [23] A weak Galerkin finite element method for time-dependent Poisson-Nernst-Planck equations
    Ji, Guanghua
    Zhu, Wanwan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [24] Mixed Finite Element Method for Modified Poisson-Nernst-Planck/Navier-Stokes Equations
    He, Mingyan
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [25] Sensitivity analysis of the Poisson Nernst–Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model
    Ibrahima Dione
    Nicolas Doyon
    Jean Deteix
    Journal of Mathematical Biology, 2019, 78 : 21 - 56
  • [26] ERROR ANALYSIS OF VIRTUAL ELEMENT METHODS FOR THE TIME-DEPENDENT POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Liu, Ya
    Liu, Yang
    Shu, Shi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 731 - 770
  • [27] Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson-Nernst-Planck equations
    Li, Minghao
    Shi, Dongyang
    Li, Zhenzhen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [28] Banach spaces-based mixed finite element methods for the coupled Navier-Stokes and Poisson-Nernst-Planck equations
    Correa, Claudio I.
    Gatica, Gabriel N.
    Henriquez, Esteban
    Ruiz-Baier, Ricardo
    Solano, Manuel
    CALCOLO, 2024, 61 (02)
  • [29] Mixed finite element analysis for the Poisson-Nernst-Planck/Stokes coupling
    He, Mingyan
    Sun, Pengtao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 : 61 - 79
  • [30] Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations
    Yang, Huaijun
    Li, Meng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)