Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

被引:2
|
作者
Huadong Gao
Dongdong He
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Tongji University,School of Aerospace Engineering and Applied Mechanics
来源
关键词
Nernst–Planck–Poisson equations; Finite element methods; Unconditional convergence; Optimal error estimate; Conservative schemes; 65N12; 65N30; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst–Planck–Poisson equations. For the linearized backward Euler FEM, an optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error estimate is provided almost unconditionally (i.e., when the mesh size h and time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.
引用
收藏
页码:1269 / 1289
页数:20
相关论文
共 50 条
  • [1] Linearized Conservative Finite Element Methods for the Nernst-Planck-Poisson Equations
    Gao, Huadong
    He, Dongdong
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 1269 - 1289
  • [2] A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations
    Huadong Gao
    Pengtao Sun
    Journal of Scientific Computing, 2018, 77 : 793 - 817
  • [3] Correction to: A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations
    Huadong Gao
    Pengtao Sun
    Journal of Scientific Computing, 2018, 77 : 818 - 818
  • [4] A conservative finite difference scheme for Poisson–Nernst–Planck equations
    Allen Flavell
    Michael Machen
    Bob Eisenberg
    Julienne Kabre
    Chun Liu
    Xiaofan Li
    Journal of Computational Electronics, 2014, 13 : 235 - 249
  • [5] A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations (vol 77, pg 793, 2018)
    Gao, Huadong
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 818 - 818
  • [6] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [7] An extended finite element method for the Nernst-Planck-Poisson equations
    Kumar, Pawan
    Swaminathan, Narasimhan
    Natarajan, Sundararajan
    SOLID STATE IONICS, 2024, 410
  • [8] Superconvergence analysis of finite element method for Poisson-Nernst-Planck equations
    Shi, Dongyang
    Yang, Huaijun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1206 - 1223
  • [9] Nonconforming finite element method for coupled Poisson-Nernst-Planck equations
    Shi, Xiangyu
    Lu, Linzhang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2714 - 2729
  • [10] Error analysis of finite element method for Poisson-Nernst-Planck equations
    Sun, Yuzhou
    Sun, Pengtao
    Zheng, Bin
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 28 - 43