An Exact Exponential Time Algorithm for Power Dominating Set

被引:0
|
作者
Daniel Binkele-Raible
Henning Fernau
机构
[1] Universität Trier,FB 4—Abteilung Informatik/Wirtschaftsinformatik
来源
Algorithmica | 2012年 / 63卷
关键词
Domination-type problems; Moderately exponential time algorithms; -hardness results; Measure and conquer;
D O I
暂无
中图分类号
学科分类号
摘要
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: given a graph G(V,E), a set P⊆V is a power dominating set if every vertex is observed after the exhaustive application of the following two rules. First, a vertex is observed if v∈P or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed, as well. We show that Power Dominating Set remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard on cubic graphs. We design an algorithm solving this problem in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}^{*}(1.7548^{n})$\end{document} on general graphs, using polynomial space only. To achieve this, we introduce so-called reference search trees that can be seen as a compact representation of usual search trees, providing non-local pointers in order to indicate pruned subtrees.
引用
收藏
页码:323 / 346
页数:23
相关论文
共 50 条
  • [41] Self-stabilizing algorithm for minimal (α,β)-dominating set
    Saadi, Leila
    Benreguia, Badreddine
    Arar, Chafik
    Moumen, Hamouma
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2022, 7 (02) : 81 - 94
  • [42] A memetic algorithm for minimum independent dominating set problem
    Yiyuan Wang
    Jiejiang Chen
    Huanyao Sun
    Minghao Yin
    Neural Computing and Applications, 2018, 30 : 2519 - 2529
  • [43] Hybrid Genetic Algorithm for Minimum Dominating Set Problem
    Hedar, Abdel-Rahman
    Ismail, Rashad
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2010, PT 4, PROCEEDINGS, 2010, 6019 : 457 - +
  • [44] Hybrid bat algorithm for minimum dominating set problem
    Abed, Saad Adnan
    Rais, Helmi Md
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (04) : 2329 - 2339
  • [45] A linear time algorithm for computing a minimum paired-dominating set of a convex bipartite graph
    Panda, B. S.
    Pradhan, D.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (12) : 1776 - 1783
  • [46] A generalized linear time algorithm for an optimal k-distance dominating set of a weighted tree
    Kundu, Sukhamay
    INFORMATION PROCESSING LETTERS, 2018, 130 : 58 - 62
  • [47] A linear-time algorithm for minimum k-hop dominating set of a cactus graph
    Abu-Affash, A. Karim
    Carmi, Paz
    Krasin, Adi
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 488 - 499
  • [48] DOMINATING SET AND CONVERSE DOMINATING SET OF A DIRECTED GRAPH
    FU, Y
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (08): : 861 - +
  • [49] The probabilistic and reliable connected power dominating set problems
    Sun, Ou
    Fan, Neng
    OPTIMIZATION LETTERS, 2019, 13 (05) : 1189 - 1206
  • [50] The probabilistic and reliable connected power dominating set problems
    Ou Sun
    Neng Fan
    Optimization Letters, 2019, 13 : 1189 - 1206