An Exact Exponential Time Algorithm for Power Dominating Set

被引:0
|
作者
Daniel Binkele-Raible
Henning Fernau
机构
[1] Universität Trier,FB 4—Abteilung Informatik/Wirtschaftsinformatik
来源
Algorithmica | 2012年 / 63卷
关键词
Domination-type problems; Moderately exponential time algorithms; -hardness results; Measure and conquer;
D O I
暂无
中图分类号
学科分类号
摘要
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: given a graph G(V,E), a set P⊆V is a power dominating set if every vertex is observed after the exhaustive application of the following two rules. First, a vertex is observed if v∈P or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed, as well. We show that Power Dominating Set remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard on cubic graphs. We design an algorithm solving this problem in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}^{*}(1.7548^{n})$\end{document} on general graphs, using polynomial space only. To achieve this, we introduce so-called reference search trees that can be seen as a compact representation of usual search trees, providing non-local pointers in order to indicate pruned subtrees.
引用
收藏
页码:323 / 346
页数:23
相关论文
共 50 条
  • [31] Forwarding Set Based Distributed Algorithm for Connected Dominating Set in WSN
    Tang, Yong
    Zhang, Jun
    Wang, Wenyong
    Xiang, Yu
    Zhang, Jun
    SENSOR LETTERS, 2012, 10 (08) : 1918 - 1924
  • [32] FROM GAP-EXPONENTIAL TIME HYPOTHESIS TO FIXED PARAMETER TRACTABLE IN APPROXIMABILITY: CLIQUE, DOMINATING SET, AND MORE
    Chalermsook, Parinya
    Cygan, Marek
    Kortsarz, Guy
    Laekhanukit, Bundit
    Manurangsi, Pasin
    Nanongkai, Danupon
    Trevisan, Luca
    SIAM JOURNAL ON COMPUTING, 2020, 49 (04) : 772 - 810
  • [33] EDGE DOMINATING SET: Efficient enumeration-based exact algorithms
    Fernau, Henning
    PARAMETERIZED AND EXACT COMPUTATION,PROCEEDINGS, 2006, 4169 : 142 - 153
  • [34] An improved algorithm for parameterized edge dominating set problem
    Iwaide, Ken
    Nagamochi, Hiroshi
    Journal of Graph Algorithms and Applications, 2016, 20 (01): : 23 - 58
  • [35] A LINEAR ALGORITHM FOR FINDING A MINIMUM DOMINATING SET IN A CACTUS
    HEDETNIEMI, ST
    LASKAR, R
    PFAFF, J
    DISCRETE APPLIED MATHEMATICS, 1986, 13 (2-3) : 287 - 292
  • [36] A memetic algorithm for minimum independent dominating set problem
    Wang, Yiyuan
    Chen, Jiejiang
    Sun, Huanyao
    Yin, Minghao
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (08): : 2519 - 2529
  • [37] Parallel Genetic Algorithm for Minimum Dominating Set Problem
    Cu Nguyen Giap
    Dinh Thi Ha
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL), 2014, : 165 - 169
  • [39] A New Distributed Algorithm for Computing a Dominating Set on Grids
    Pisantechakool, Photchchara
    Tan, Xuehou
    FRONTIERS IN ALGORITHMICS (FAW 2015), 2015, 9130 : 217 - 228
  • [40] A Distributed Approximation Algorithm for the Total Dominating Set Problem
    Wang, Limin
    Zhang, Zhao
    Du, Donglei
    Mao, Yaping
    Zhang, Xiaoyan
    SSRN, 2022,