An Exact Exponential Time Algorithm for Power Dominating Set

被引:0
|
作者
Daniel Binkele-Raible
Henning Fernau
机构
[1] Universität Trier,FB 4—Abteilung Informatik/Wirtschaftsinformatik
来源
Algorithmica | 2012年 / 63卷
关键词
Domination-type problems; Moderately exponential time algorithms; -hardness results; Measure and conquer;
D O I
暂无
中图分类号
学科分类号
摘要
The Power Dominating Set problem is an extension of the well-known domination problem on graphs in a way that we enrich it by a second propagation rule: given a graph G(V,E), a set P⊆V is a power dominating set if every vertex is observed after the exhaustive application of the following two rules. First, a vertex is observed if v∈P or it has a neighbor in P. Secondly, if an observed vertex has exactly one unobserved neighbor u, then also u will be observed, as well. We show that Power Dominating Set remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard on cubic graphs. We design an algorithm solving this problem in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}^{*}(1.7548^{n})$\end{document} on general graphs, using polynomial space only. To achieve this, we introduce so-called reference search trees that can be seen as a compact representation of usual search trees, providing non-local pointers in order to indicate pruned subtrees.
引用
收藏
页码:323 / 346
页数:23
相关论文
共 50 条
  • [1] An Exact Exponential Time Algorithm for Power Dominating Set
    Binkele-Raible, Daniel
    Fernau, Henning
    ALGORITHMICA, 2012, 63 (1-2) : 323 - 346
  • [2] Exact (exponential) algorithms for the dominating set problem
    Fomin, FV
    Kratsch, D
    Woeginger, GJ
    GRAPH -THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2004, 3353 : 245 - 256
  • [3] An Exact Algorithm for the Minimum Dominating Set Problem
    Jiang, Hua
    Zheng, Zhifei
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 5604 - 5612
  • [4] A refined exact algorithm for Edge Dominating Set
    Xiao, Mingyu
    Nagarnochi, Hiroshi
    THEORETICAL COMPUTER SCIENCE, 2014, 560 : 207 - 216
  • [5] An exact algorithm for lowest edge dominating set
    Department of AppliedMathematics and Physics, Graduate School of Informatics, Kyoto University, Kyotoshi
    606-8501, Japan
    IEICE Trans Inf Syst, 3 (414-421):
  • [6] An Exact Algorithm for Lowest Edge Dominating Set
    Iwaide, Ken
    Nagamochi, Hiroshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (03): : 414 - 421
  • [7] An Efficient Algorithm for Power Dominating Set
    Blaesius, Thomas
    Goettlicher, Max
    ALGORITHMICA, 2025, 87 (03) : 344 - 376
  • [8] An exact algorithm for connected red-blue dominating set
    Abu-Khzam, Faisal N.
    Mouawad, Amer E.
    Liedloff, Mathieu
    JOURNAL OF DISCRETE ALGORITHMS, 2011, 9 (03) : 252 - 262
  • [9] An improved exact algorithm for minimum dominating set in chordal graphs
    Abu-Khzam, Faisal N.
    INFORMATION PROCESSING LETTERS, 2022, 174
  • [10] Design by measure and conquer a faster exact algorithm for dominating set
    Van Rooij, Johan M. M.
    Bodlaender, Hans L.
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 657 - 667