Riesz transforms for bounded Laplacians on graphs

被引:1
|
作者
Li Chen
Thierry Coulhon
Bobo Hua
机构
[1] University of Connecticut,Department of Mathematics
[2] Université de Cergy-Pontoise,School of Mathematical Sciences
[3] LMNS,Shanghai Center for Mathematical Sciences
[4] Fudan University,undefined
[5] Fudan University,undefined
来源
Mathematische Zeitschrift | 2020年 / 294卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study several problems related to the ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document} boundedness of Riesz transforms for graphs endowed with so-called bounded Laplacians. Introducing a proper notion of the gradient of a function, we prove for p∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,2]$$\end{document} an ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document} estimate for the gradient of the continuous time heat semigroup, an ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document} interpolation inequality as well as the ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document} boundedness of the modified Littlewood–Paley–Stein function for a graph with bounded Laplacian. This yields an analogue to Dungey’s results in [21] while removing some additional assumptions. Coming back to the classical notion of the gradient, we give a counterexample to the interpolation inequality and hence to the boundedness of Riesz transforms for bounded Laplacians for 1<p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<2$$\end{document}. Finally, we prove the boundedness of the Riesz transform for 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p<\infty $$\end{document} under the assumption of positive spectral gap.
引用
收藏
页码:397 / 417
页数:20
相关论文
共 50 条
  • [21] Riesz transforms on connected sums
    Carron, Gilles
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (07) : 2329 - 2343
  • [22] HPw boundedness of Riesz transforms
    Lee, MY
    Lin, CC
    Yang, WC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) : 394 - 400
  • [23] Riesz transforms for Jacobi expansions
    Adam Nowak
    Peter Sjögren
    Journal d'Analyse Mathématique, 2008, 104
  • [24] RIESZ TRANSFORMS AND PARTIAL DERIVATIVES
    YUDIN, VA
    MATHEMATICS OF THE USSR-SBORNIK, 1991, 69 (02): : 445 - 451
  • [25] Riesz transforms of conical manifolds
    Li, HQ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) : 145 - 238
  • [26] HILBERT-RIESZ TRANSFORMS
    FEYEL, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (09): : 653 - 655
  • [27] Martingale transforms in Riesz spaces
    Boukara, Tarik
    Niouar, Mounssif
    Gretete, Driss
    Ramdane, Kawtar
    POSITIVITY, 2025, 29 (01)
  • [28] Riesz transforms for the Weinstein operator
    Nefzi, Walid
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (10) : 751 - 771
  • [29] Riesz transforms for Jacobi expansions
    Nowak, Adam
    Sjogren, Peter
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1): : 341 - 369
  • [30] Riesz transforms for Laguerre expansions
    Harboure, Eleonor
    Torrea, Jose Luis
    Viviani, Beatriz E.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (03) : 999 - 1014