共 50 条
Riesz transforms for bounded Laplacians on graphs
被引:1
|作者:
Li Chen
Thierry Coulhon
Bobo Hua
机构:
[1] University of Connecticut,Department of Mathematics
[2] Université de Cergy-Pontoise,School of Mathematical Sciences
[3] LMNS,Shanghai Center for Mathematical Sciences
[4] Fudan University,undefined
[5] Fudan University,undefined
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study several problems related to the ℓp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell ^p$$\end{document} boundedness of Riesz transforms for graphs endowed with so-called bounded Laplacians. Introducing a proper notion of the gradient of a function, we prove for p∈(1,2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\in (1,2]$$\end{document} an ℓp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell ^p$$\end{document} estimate for the gradient of the continuous time heat semigroup, an ℓp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell ^p$$\end{document} interpolation inequality as well as the ℓp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell ^p$$\end{document} boundedness of the modified Littlewood–Paley–Stein function for a graph with bounded Laplacian. This yields an analogue to Dungey’s results in [21] while removing some additional assumptions. Coming back to the classical notion of the gradient, we give a counterexample to the interpolation inequality and hence to the boundedness of Riesz transforms for bounded Laplacians for 1<p<2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p<2$$\end{document}. Finally, we prove the boundedness of the Riesz transform for 1<p<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1< p<\infty $$\end{document} under the assumption of positive spectral gap.
引用
收藏
页码:397 / 417
页数:20
相关论文