Composition of Quadratic-Phase Fourier Wavelet Transform

被引:0
|
作者
Sharma P.B. [1 ]
Prasad A. [1 ]
机构
[1] Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad
关键词
Fourier transform; Quadratic-phase Fourier wavelet transform; Wavelet transform; Weighted Sobolev spaces;
D O I
10.1007/s40819-022-01297-2
中图分类号
学科分类号
摘要
In the present paper we defined the composition of quadratic-phase Fourier wavelet transform (QPFWT) and discussed its some properties. Parseval’s identity and inversion formula for the composition of QPFWT are obtained. The boundedness results of QPFWT on generalized weighted Sobolev space are also studied. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [31] An interplay between quadratic-phase Fourier and Zak transforms
    Shah, Firdous A.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    OPTIK, 2022, 260
  • [32] Generalized wave packet transform based on convolution operator in the quaternion quadratic-phase Fourier domain
    Dar A.H.
    Bhat M.Y.
    Rahman M.
    Optik, 2023, 286
  • [33] The 2-D Hyper-complex Gabor quadratic-phase Fourier transform and uncertainty principles
    Bhat, M. Younus
    Dar, Aamir H.
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 243 - 260
  • [34] Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain
    Bhat, Mohammad Younus
    Dar, Aamir H.
    Zayed, Mohra
    Bhat, Altaf A.
    MATHEMATICS, 2023, 11 (13)
  • [35] New Convolutions for Quadratic-Phase Fourier Integral Operators and their Applications
    Castro, L. P.
    Minh, L. T.
    Tuan, N. M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
  • [36] The 2-D Hyper-complex Gabor quadratic-phase Fourier transform and uncertainty principles
    M. Younus Bhat
    Aamir H. Dar
    The Journal of Analysis, 2023, 31 : 243 - 260
  • [37] New Convolutions for Quadratic-Phase Fourier Integral Operators and their Applications
    L. P. Castro
    L. T. Minh
    N. M. Tuan
    Mediterranean Journal of Mathematics, 2018, 15
  • [38] Quadratic-phase wavelet scalogramQuadratic-phase wavelet...A. Dades, O. Tyr
    Abdelaali Dades
    Othman Tyr
    Journal of Pseudo-Differential Operators and Applications, 2025, 16 (1)
  • [39] Weighted convolutions in the quadratic-phase Fourier domains: Product theorems and applications
    Lone, Waseem Z.
    Shah, Firdous A.
    OPTIK, 2022, 270
  • [40] DONOHO-STARK THEOREM FOR THE QUADRATIC-PHASE FOURIER INTEGRAL OPERATORS
    Berkak, El Mehdi
    Loualid, El Mehdi
    Daher, Radouan
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (04): : 335 - 339