Composition of Quadratic-Phase Fourier Wavelet Transform

被引:0
|
作者
Sharma P.B. [1 ]
Prasad A. [1 ]
机构
[1] Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad
关键词
Fourier transform; Quadratic-phase Fourier wavelet transform; Wavelet transform; Weighted Sobolev spaces;
D O I
10.1007/s40819-022-01297-2
中图分类号
学科分类号
摘要
In the present paper we defined the composition of quadratic-phase Fourier wavelet transform (QPFWT) and discussed its some properties. Parseval’s identity and inversion formula for the composition of QPFWT are obtained. The boundedness results of QPFWT on generalized weighted Sobolev space are also studied. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [21] Short time quadratic-phase quaternionic Fourier transform and associated uncertainty principle
    Tawseef Ahmad Sheikh
    Neyaz A. Sheikh
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 1125 - 1141
  • [22] Short time quadratic-phase quaternionic Fourier transform and associated uncertainty principle
    Sheikh, Tawseef Ahmad
    Sheikh, Neyaz A. A.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 1125 - 1141
  • [23] Modified Ambiguity Function and Wigner Distribution Associated With Quadratic-Phase Fourier Transform
    Tien Minh Lai
    Journal of Fourier Analysis and Applications, 2024, 30
  • [24] Quadratic-phase wave packet transform
    Bhat, M. Younus
    Dar, Aamir H.
    Urynbassarova, Didar
    Urynbassarova, Altyn
    OPTIK, 2022, 261
  • [25] Quadratic-phase Fourier transform of tempered distributions and pseudo-differential operators
    Kumar, Manish
    Pradhan, Tusharakanta
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (06) : 449 - 465
  • [26] Modified Ambiguity Function and Wigner Distribution Associated With Quadratic-Phase Fourier Transform
    Lai, Tien Minh
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (01)
  • [27] Analytical solutions of generalized differential equations using quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Nisar, Kottakkaran Sooppy
    Khalifa, Amany Salah
    AIMS MATHEMATICS, 2022, 7 (02): : 1925 - 1940
  • [28] Uncertainty principles for the quadratic-phase Fourier transforms
    Shah, Firdous A.
    Nisar, Kottakkaran S.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10416 - 10431
  • [29] Uncertainty Principles for the Two-Sided Quaternion Windowed Quadratic-Phase Fourier Transform
    Bhat, Mohammad Younus
    Dar, Aamir Hamid
    Nurhidayat, Irfan
    Pinelas, Sandra
    SYMMETRY-BASEL, 2022, 14 (12):
  • [30] Quadratic-Phase Hilbert Transform and the Associated Bedrosian Theorem
    Srivastava, Hari M. M.
    Shah, Firdous A. A.
    Qadri, Huzaifa L. L.
    Lone, Waseem Z. Z.
    Gojree, Musadiq S. S.
    AXIOMS, 2023, 12 (02)