Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights

被引:0
|
作者
Stilian A. Stoev
Murad S. Taqqu
机构
[1] University of Michigan,Department of Statistics
[2] Boston University,Department of Mathematics and Statistics
关键词
weighted sums; random weights; limit theorems; stable Lévy motion; Skorohod topology; strong ; -topology; Primary 60F17; 60G52; 60G70; Secondary 60E07; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U_{j} ,\;j \in \mathbb{N}$\end{document} be independent and identically distributed random variables with heavy-tailed distributions. Consider a sequence of random weights \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left\{ {W_{j} } \right\}}_{{j \in \mathbb{N}}}$\end{document}, independent of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left\{ {U_{j} } \right\}}_{{j \in \mathbb{N}}}$\end{document} and focus on the weighted sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum\nolimits_{j = 1}^{{\left[ {nt} \right]}} {W_{j} {\left( {U_{j} - \mu } \right)}} }$\end{document}, where μ involves a suitable centering. We establish sufficient conditions for these weighted sums to converge to non-trivial limit processes, as n→∞, when appropriately normalized. The convergence holds, for example, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left\{ {W_{j} } \right\}}_{{j \in \mathbb{N}}}$\end{document} is strictly stationary, dependent, and W1 has lighter tails than U1. In particular, the weights Wjs can be strongly dependent. The limit processes are scale mixtures of stable Lévy motions. We establish weak convergence in the Skorohod J1-topology. We also consider multivariate weights and show that they converge weakly in the strong Skorohod M1-topology. The M1-topology, while weaker than the J1-topology, is strong enough for the supremum and infimum functionals to be continuous.
引用
收藏
页码:55 / 87
页数:32
相关论文
共 50 条
  • [31] Singularity Analysis for Heavy-Tailed Random Variables
    Ercolani, Nicholas M.
    Jansen, Sabine
    Ueltschi, Daniel
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) : 1 - 46
  • [32] Percentiles of sums of heavy-tailed random variables: beyond the single-loss approximation
    Hernandez, Lorenzo
    Tejero, Jorge
    Suarez, Alberto
    Carrillo-Menendez, Santiago
    STATISTICS AND COMPUTING, 2014, 24 (03) : 377 - 397
  • [33] Singularity Analysis for Heavy-Tailed Random Variables
    Nicholas M. Ercolani
    Sabine Jansen
    Daniel Ueltschi
    Journal of Theoretical Probability, 2019, 32 : 1 - 46
  • [34] A contribution to large deviations for heavy-tailed random sums
    Su, C
    Tang, QH
    Jiang, T
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (04): : 438 - 444
  • [35] On closure properties of heavy-tailed distributions for random sums*
    Yang Yang
    Qingwu Gao
    Lithuanian Mathematical Journal, 2014, 54 : 366 - 377
  • [36] A contribution to large deviations for heavy-tailed random sums
    苏淳
    唐启鹤
    江涛
    Science China Mathematics, 2001, (04) : 438 - 444
  • [37] Generalized moments of sums with heavy-tailed random summands
    Mantas Dirma
    Neda Nakliuda
    Jonas Šiaulys
    Lithuanian Mathematical Journal, 2023, 63 (3) : 254 - 271
  • [38] A contribution to large deviations for heavy-tailed random sums
    Chun Su
    Qihe Tang
    Tao Jiang
    Science in China Series A: Mathematics, 2001, 44 : 438 - 444
  • [39] On closure properties of heavy-tailed distributions for random sums*
    Yang, Yang
    Gao, Qingwu
    LITHUANIAN MATHEMATICAL JOURNAL, 2014, 54 (03) : 366 - 377
  • [40] Efficient simulation and conditional functional limit theorems for ruinous heavy-tailed random walks
    Blanchet, Jose
    Liu, Jingchen
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (08) : 2994 - 3031