Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights

被引:0
|
作者
Stilian A. Stoev
Murad S. Taqqu
机构
[1] University of Michigan,Department of Statistics
[2] Boston University,Department of Mathematics and Statistics
关键词
weighted sums; random weights; limit theorems; stable Lévy motion; Skorohod topology; strong ; -topology; Primary 60F17; 60G52; 60G70; Secondary 60E07; 62E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U_{j} ,\;j \in \mathbb{N}$\end{document} be independent and identically distributed random variables with heavy-tailed distributions. Consider a sequence of random weights \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left\{ {W_{j} } \right\}}_{{j \in \mathbb{N}}}$\end{document}, independent of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left\{ {U_{j} } \right\}}_{{j \in \mathbb{N}}}$\end{document} and focus on the weighted sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum\nolimits_{j = 1}^{{\left[ {nt} \right]}} {W_{j} {\left( {U_{j} - \mu } \right)}} }$\end{document}, where μ involves a suitable centering. We establish sufficient conditions for these weighted sums to converge to non-trivial limit processes, as n→∞, when appropriately normalized. The convergence holds, for example, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\left\{ {W_{j} } \right\}}_{{j \in \mathbb{N}}}$\end{document} is strictly stationary, dependent, and W1 has lighter tails than U1. In particular, the weights Wjs can be strongly dependent. The limit processes are scale mixtures of stable Lévy motions. We establish weak convergence in the Skorohod J1-topology. We also consider multivariate weights and show that they converge weakly in the strong Skorohod M1-topology. The M1-topology, while weaker than the J1-topology, is strong enough for the supremum and infimum functionals to be continuous.
引用
收藏
页码:55 / 87
页数:32
相关论文
共 50 条
  • [21] Asymptotic behavior of product of two heavy-tailed dependent random variables
    Vahid Ranjbar
    Mohammad Amini
    Jaap Geluk
    Abolghasem Bozorgnia
    Acta Mathematica Sinica, English Series, 2013, 29 : 355 - 364
  • [22] Asymptotic Behavior of Product of Two Heavy-tailed Dependent Random Variables
    Vahid RANJBAR
    Mohammad AMINI
    Jaap GELUK
    Abolghasem BOZORGNIA
    ActaMathematicaSinica, 2013, 29 (02) : 355 - 364
  • [23] Asymptotic Behavior of Product of Two Heavy-tailed Dependent Random Variables
    Vahid RANJBAR
    Mohammad AMINI
    Jaap GELUK
    Abolghasem BOZORGNIA
    Acta Mathematica Sinica,English Series, 2013, (02) : 355 - 364
  • [24] Asymptotic Behavior of Product of Two Heavy-tailed Dependent Random Variables
    Vahid RANJBAR
    Mohammad AMINI
    Jaap GELUK
    Abolghasem BOZORGNIA
    数学学报, 2013, 56 (02) : 295 - 295
  • [25] A symptotic Behavior of Convolution of Dependent Random Variables with Heavy-Tailed Distributions
    Ranjbar, V. Y.
    Amini, M.
    Bozorgnia, A.
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (02): : 217 - 230
  • [26] Asymptotic Behavior of Convolution of Dependent Random Variables with Heavy-Tailed Distributions
    Ranjbar, Vahid Y.
    Amini, Mohammad
    Bozorgnia, Abolghasem
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (01): : 21 - 34
  • [27] Asymptotic behavior of product of two heavy-tailed dependent random variables
    Ranjbar, Vahid
    Amini, Mohammad
    Geluk, Jaap
    Bozorgnia, Abolghasem
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (02) : 355 - 364
  • [28] Asymptotics for Tail Probability of Random Sums with a Heavy-Tailed Number and Dependent Increments
    Wang, Kaiyong
    Lin, Jinguan
    Yang, Yang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (10-12) : 2595 - 2604
  • [29] Percentiles of sums of heavy-tailed random variables: beyond the single-loss approximation
    Lorenzo Hernández
    Jorge Tejero
    Alberto Suárez
    Santiago Carrillo-Menéndez
    Statistics and Computing, 2014, 24 : 377 - 397
  • [30] Generalized moments of sums with heavy-tailed random summands
    Dirma, Mantas
    Nakliuda, Neda
    Siaulys, Jonas
    LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (03) : 254 - 271