Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods

被引:0
|
作者
Saeed Ghanbari
Amir Ali Shahmansouri
Habib Akbarzadeh Bengar
Abouzar Jafari
机构
[1] University of Mazandaran,Department of Civil Engineering
[2] University of Michigan and Shanghai Jiao Tong University Joint Institute,undefined
[3] Shanghai Jiao Tong University,undefined
关键词
Agricultural waste; Lightweight aggregate concrete; High-strength concrete; Strength prediction; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and contribute to sustainable development. Several experimental investigations on such concrete’s compressive strength (fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}) and behavior have been done. The results of 229 concrete samples made by oil palm shell (OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}) as a lightweight aggregate (LWA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LWA$$\end{document}) were used to develop models for predicting the fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document} of the high-strength lightweight aggregate concrete (HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}). To this end, gene expression programming (GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document}), adaptive neuro-fuzzy inference system (ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document}), artificial neural network (ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document}), and multiple linear regression (MLR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MLR$$\end{document}) are employed as machine learning (ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}) and regression methods. The water-to-binder (W/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W/B$$\end{document}) ratio, ordinary Portland cement (OPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPC$$\end{document}), fly ash (FA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FA$$\end{document}), silica fume (SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SF$$\end{document}), fine aggregate (Sand\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sand$$\end{document}), natural coarse aggregate (Gravel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gravel$$\end{document}), OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}, superplasticizer (SP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SP$$\end{document}) contents, and specimen age are among the nine input parameters used in the developed models. The results show that all ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}-based models efficiently predict the HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}’s fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}, which comprised OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document} agricultural wastes. According to the results, the ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document} model outperformed the GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document} and ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document} models. Moreover, an uncertainty analysis through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application of the developed models due to their superior robustness and high accuracy in future codes of practice.
引用
收藏
页码:1096 / 1115
页数:19
相关论文
共 50 条
  • [31] Comparison of prediction models for shrinkage and creep of high-strength, lightweight aggregate concrete
    Mei, Sheng-qi
    Xie, Hui-bing
    Su, Li
    Gong, Jian
    Guo, Kun
    Wang, Yuan-feng
    GREEN BUILDING, ENVIRONMENT, ENERGY AND CIVIL ENGINEERING, 2017, : 31 - 35
  • [32] Feature engineering for predicting compressive strength of high-strength concrete with machine learning models
    Kumar P.
    Pratap B.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 723 - 736
  • [33] Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength
    Shafigh, Payam
    Jumaat, Mohd Zamin
    Bin Mahmud, Hilmi
    Hamid, Norjidah Anjang Abd
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 27 (01) : 252 - 258
  • [34] Compressive strength of lightweight aggregate concrete exposed to high temperatures
    Bingöl, AF
    Gül, R
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2004, 11 (01) : 68 - 72
  • [35] Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete
    Ahmmad, Rasel
    Jumaat, Mohd Zamin
    Alengaram, U. Johnson
    Bahri, Syamsul
    Rehman, Muhammad Abdur
    bin Hashim, Huzaifa
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 566 - 574
  • [36] Compressive Strength of Organic Lightweight Aggregate Concrete
    Cheng, Congmi
    Su, Dagen
    He, Juan
    Jiao, Chujie
    SUSTAINABLE DEVELOPMENT OF URBAN ENVIRONMENT AND BUILDING MATERIAL, PTS 1-4, 2012, 374-377 : 1531 - +
  • [37] Classification of Concrete Compressive Strength Using Machine Learning Methods
    Ozdemir, Muhammet
    Celik, Gaffari
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, CDVE 2024, 2024, 15158 : 343 - 353
  • [38] Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete
    Ming Kun Yew
    Hilmi Bin Mahmud
    Payam Shafigh
    Bee Chin Ang
    Ming Chian Yew
    Materials and Structures, 2016, 49 : 1221 - 1233
  • [39] Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete
    Yew, Ming Kun
    Bin Mahmud, Hilmi
    Shafigh, Payam
    Ang, Bee Chin
    Yew, Ming Chian
    MATERIALS AND STRUCTURES, 2016, 49 (04) : 1221 - 1233
  • [40] Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates
    Aslam, Muhammad
    Shafigh, Payam
    Nomeli, Mohammad Alizadeh
    Jumaat, Mohd Zamin
    JOURNAL OF BUILDING ENGINEERING, 2017, 13 : 53 - 62