Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods

被引:0
|
作者
Saeed Ghanbari
Amir Ali Shahmansouri
Habib Akbarzadeh Bengar
Abouzar Jafari
机构
[1] University of Mazandaran,Department of Civil Engineering
[2] University of Michigan and Shanghai Jiao Tong University Joint Institute,undefined
[3] Shanghai Jiao Tong University,undefined
关键词
Agricultural waste; Lightweight aggregate concrete; High-strength concrete; Strength prediction; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and contribute to sustainable development. Several experimental investigations on such concrete’s compressive strength (fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}) and behavior have been done. The results of 229 concrete samples made by oil palm shell (OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}) as a lightweight aggregate (LWA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LWA$$\end{document}) were used to develop models for predicting the fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document} of the high-strength lightweight aggregate concrete (HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}). To this end, gene expression programming (GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document}), adaptive neuro-fuzzy inference system (ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document}), artificial neural network (ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document}), and multiple linear regression (MLR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MLR$$\end{document}) are employed as machine learning (ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}) and regression methods. The water-to-binder (W/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W/B$$\end{document}) ratio, ordinary Portland cement (OPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPC$$\end{document}), fly ash (FA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FA$$\end{document}), silica fume (SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SF$$\end{document}), fine aggregate (Sand\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sand$$\end{document}), natural coarse aggregate (Gravel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gravel$$\end{document}), OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}, superplasticizer (SP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SP$$\end{document}) contents, and specimen age are among the nine input parameters used in the developed models. The results show that all ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}-based models efficiently predict the HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}’s fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}, which comprised OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document} agricultural wastes. According to the results, the ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document} model outperformed the GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document} and ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document} models. Moreover, an uncertainty analysis through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application of the developed models due to their superior robustness and high accuracy in future codes of practice.
引用
收藏
页码:1096 / 1115
页数:19
相关论文
共 50 条
  • [21] Compressive Strength Prediction of High-Strength Concrete Using Long Short-Term Memory and Machine Learning Algorithms
    Chen, Honggen
    Li, Xin
    Wu, Yanqi
    Zuo, Le
    Lu, Mengjie
    Zhou, Yisong
    BUILDINGS, 2022, 12 (03)
  • [22] Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods
    Cihan, M. Timur
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [23] The Effect of Palm Oil Clinker and Oil Palm Shell on the Compressive Strength of Concrete
    Alaa A. Shakir
    M. H. Wan Ibrahim
    N. H. Othman
    S. Shahidan
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2019, 43 : 1 - 14
  • [24] The Effect of Palm Oil Clinker and Oil Palm Shell on the Compressive Strength of Concrete
    Shakir, Alaa A.
    Ibrahim, M. H. Wan
    Othman, N. H.
    Shahidan, S.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2019, 43 (Suppl 1) : 1 - 14
  • [25] Study of Prediction Model for Compressive Strength of Lightweight Aggregate Concrete
    Cui, H. Z.
    ADVANCED MATERIALS AND STRUCTURES, PTS 1 AND 2, 2011, 335-336 : 1204 - 1209
  • [26] Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods
    Candelaria, Ma. Doreen Esplana
    Kee, Seong-Hoon
    Lee, Kang-Seok
    MATERIALS, 2022, 15 (05)
  • [27] An interpretable probabilistic machine learning model for forecasting compressive strength of oil palm shell-based lightweight aggregate concrete containing fly ash or silica fume
    Sun, Y.
    Lee, H. S.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 426
  • [28] Influence of aggregate on compressive strength of normal and high-strength concrete - Discussion
    Saileswaran, N
    ACI MATERIALS JOURNAL, 1999, 96 (01) : 131 - 132
  • [29] A new method of producing high strength oil palm shell lightweight concrete
    Shafigh, Payam
    Jumaat, Mohd Zamin
    Bin Mahmud, Hilmi
    Alengaram, U. Johnson
    MATERIALS & DESIGN, 2011, 32 (10) : 4839 - 4843
  • [30] Shrinkage and creep of high-strength lightweight aggregate concrete
    Sun, Hailin
    Ye, Lieping
    Ding, Jiantong
    Guo, Yushun
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2007, 47 (06): : 765 - 767