Integrability and linearizability for Lotka-Volterra systems with the 3:−q resonant saddle point

被引:0
|
作者
Qinlong Wang
Wentao Huang
机构
[1] Hezhou University,School of Science
[2] Guilin University of Electronic Technology,Guangxi Key Laboratory of Trusted Software
关键词
Lotka-Volterra system; integrability; linearizability; generalized center;
D O I
暂无
中图分类号
学科分类号
摘要
Integrability and linearizability of a Lotka-Volterra system in a neighborhood of the singular point with eigenvalues 3 and any negative integer −q are studied completely. By computing the singular point quantities and generalized period constants, we obtain, respectively, the integrable and linearizable necessary conditions for this class of systems. Then we apply some effective ways to prove the sufficiency. Here the algorithms of finding necessary conditions are all linear and readily done using computer algebra system such as Mathematica or Maple, and these play an important role in solving completely the integrability and linearizability for the 3:−q resonant case.
引用
收藏
相关论文
共 50 条
  • [21] STABILITY OF LOTKA-VOLTERRA SYSTEMS
    TULJAPURKAR, SD
    SEMURA, JS
    NATURE, 1975, 257 (5525) : 388 - 389
  • [22] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556
  • [23] Integrable Lotka-Volterra systems
    Bogoyavlenskij, O. I.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06): : 543 - 556
  • [24] The Integrability and the Zero-Hopf Bifurcation of the Three Dimensional Lotka-Volterra Systems
    Salih, Rizgar H.
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [25] STABILITY OF LOTKA-VOLTERRA SYSTEMS
    TULJAPURKAR, SD
    NATURE, 1976, 264 (5584) : 381 - 381
  • [26] The Resonant Center Problem for a 2:-3 Resonant Cubic Lotka-Volterra System
    Gine, Jaume
    Christopher, Colin
    Presern, Mateja
    Romanovski, Valery G.
    Shcheglova, Natalie L.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2012, 2012, 7442 : 129 - 142
  • [27] PERSISTENCE IN 3-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS
    BUTLER, GJ
    WALTMAN, P
    MATHEMATICAL AND COMPUTER MODELLING, 1988, 10 (01) : 13 - 16
  • [28] Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system
    Christopher C.
    Rousseau C.
    Qualitative Theory of Dynamical Systems, 2004, 5 (1) : 11 - 61
  • [29] Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities
    Brigita Ferčec
    Jaume Giné
    Yirong Liu
    Valery G. Romanovski
    Acta Applicandae Mathematicae, 2013, 124 : 107 - 122
  • [30] Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities
    Fercec, Brigita
    Gine, Jaume
    Liu, Yirong
    Romanovski, Valery G.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 124 (01) : 107 - 122