Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities

被引:24
|
作者
Fercec, Brigita [1 ]
Gine, Jaume [2 ]
Liu, Yirong [3 ]
Romanovski, Valery G. [1 ,4 ]
机构
[1] Univ Maribor, Ctr Appl Math & Theoret Phys, Maribor 2000, Slovenia
[2] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[3] Cent S Univ, Sch Math, Changsha 410083, Hunan, Peoples R China
[4] Univ Maribor, Fac Nat Sci & Math, Maribor 2000, Slovenia
基金
中国国家自然科学基金;
关键词
Integrability; Linearizability; Polynomial vector field; Polynomial differential system; ISOCHRONOUS CENTERS; LIMIT-CYCLES; LINEARIZABILITY; POLYNOMIALS; C-2;
D O I
10.1007/s10440-012-9772-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the integrability problem for the two-dimensional Lotka-Volterra complex quartic systems which are linear systems perturbed by fourth degree homogeneous polynomials, that is, we consider systems of the form , . Conditions for the integrability of this system are found. From them the center conditions for corresponding real system can be derived. The study relays on making use of algorithms of computational algebra based on the Groebner basis theory. To simplify laborious manipulations with polynomial modular arithmetics is involved.
引用
收藏
页码:107 / 122
页数:16
相关论文
共 50 条
  • [1] Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities
    Brigita Ferčec
    Jaume Giné
    Yirong Liu
    Valery G. Romanovski
    Acta Applicandae Mathematicae, 2013, 124 : 107 - 122
  • [2] Linearizability conditions for Lotka-Volterra planar complex quartic systems having homogeneous nonlinearities
    Gine, Jaume
    Kadyrsizova, Zhibek
    Liu, Yirong
    Romanovski, Valery G.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 1190 - 1201
  • [3] Integrability conditions for Lotka-Volterra planar complex quintic systems
    Gine, Jaume
    Romanovski, Valery G.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 2100 - 2105
  • [4] Integrability of Lotka-Volterra Planar Complex Cubic Systems
    Dukaric, Masa
    Gine, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (01):
  • [5] Linearizability conditions for Lotka-Volterra planar complex cubic systems
    Gine, Jaume
    Romanovski, Valery G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (22)
  • [6] Integrability and linearizability of the Lotka-Volterra systems
    Liu, CJ
    Chen, GT
    Li, CZ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (02) : 301 - 320
  • [7] Integrability of complex planar systems with homogeneous nonlinearities
    Fercec, Brigita
    Gine, Jaume
    Romanovski, Valery G.
    Edneral, Victor F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 894 - 914
  • [8] ON THE INTEGRABILITY OF SOME GENERALIZED LOTKA-VOLTERRA SYSTEMS
    BOUNTIS, TC
    BIER, M
    HIJMANS, J
    PHYSICS LETTERS A, 1983, 97 (1-2) : 11 - 14
  • [9] The integrability of a class of cubic Lotka-Volterra systems
    Liu, Changjian
    Li, Yun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 67 - 74
  • [10] Integrability of Lotka-Volterra type systems of degree 4
    Liu, Changjian
    Chen, Guoting
    Chen, Guanrong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 1107 - 1116