Toeplitz Kernels and Finite-Rank Commutators of Truncated Toeplitz Operators

被引:0
|
作者
Xiaoyuan Yang
Yufeng Lu
机构
[1] Jiangsu Ocean University,School of Science
[2] Dalian University of Technology,School of Mathematical Sciences
关键词
Model spaces; Truncated Toeplitz operators; Commutators; Finite Blaschke products; Finite-rank; 47B35; 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using some properties about Toeplitz kernels, we present some results about finite-rank properties of the commutator [Af,Ag]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_f,~A_g]$$\end{document}. Firstly, we show that [ABn,Av∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_v^*]$$\end{document} must have a finite rank on the model space Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document}, where Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document} is a finite Blaschke product and v is an inner function. Next, we present that when kerTu¯Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {ker}~T_{\overline{u}B_n}$$\end{document} is an invariant subspace of Tϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\phi ^*$$\end{document}, then [ABn,Aϕ∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_\phi ^*]$$\end{document} has a finite rank on Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document} for ϕ∈H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in H^\infty $$\end{document}. Finally, we prove that [ABn,Aϕ∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_\phi ^*]$$\end{document} must have a finite rank on Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document} when u=Bnu1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=B_nu_1$$\end{document} for an inner function u1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1$$\end{document}.
引用
收藏
页码:2175 / 2193
页数:18
相关论文
共 50 条
  • [1] Toeplitz Kernels and Finite-Rank Commutators of Truncated Toeplitz Operators
    Yang, Xiaoyuan
    Lu, Yufeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2175 - 2193
  • [2] Toeplitz kernels and finite rank truncated Toeplitz operators
    Camara, M. Cristina
    Carteiro, Carlos
    RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 43 - 62
  • [3] Finite-rank and compact defect operators of truncated Toeplitz operators
    Yang, Xiaoyuan
    Li, Ran
    Yang, Yixin
    Lu, Yufeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 510 (02)
  • [4] TRUNCATED TOEPLITZ OPERATORS OF FINITE RANK
    Bessonov, R. V.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (04) : 1301 - 1313
  • [5] Finite rank commutators of Toeplitz operators on the bidisk
    Lee, Young Joo
    STUDIA MATHEMATICA, 2012, 209 (02) : 189 - 201
  • [6] Finite Rank Commutators and Semicommutators of Quasihomogeneous Toeplitz Operators
    Cuckovic, Zeljko
    Louhichi, Issam
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (03) : 429 - 439
  • [7] Finite Rank Commutators and Semicommutators of Quasihomogeneous Toeplitz Operators
    Z̆eljko C̆uc̆ković
    Issam Louhichi
    Complex Analysis and Operator Theory, 2008, 2 : 429 - 439
  • [8] Rank of Truncated Toeplitz Operators
    Caixing Gu
    Dong-O Kang
    Complex Analysis and Operator Theory, 2017, 11 : 825 - 842
  • [9] Rank of Truncated Toeplitz Operators
    Gu, Caixing
    Kang, Dong-O
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (04) : 825 - 842
  • [10] Finite-Rank Products of Toeplitz Operators in Several Complex Variables
    Trieu Le
    Integral Equations and Operator Theory, 2009, 63 : 547 - 555