On Leibniz Algebras whose Subalgebras are Either Ideals or Self-Idealizing Subalgebras

被引:0
|
作者
I. A. Kurdachenko
O. O. Pypka
I. Ya. Subbotin
机构
[1] O. Honchar Dnipro National University,
[2] Los Angeles National University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A subalgebra S of a Leibniz algebra L is called self-idealizing in L if it coincides with its idealizer IL(S). We study the structure of Leibniz algebras whose subalgebras are either ideals or self-idealizing subalgebras.
引用
收藏
页码:944 / 962
页数:18
相关论文
共 50 条
  • [1] On Leibniz Algebras whose Subalgebras are Either Ideals or Self-Idealizing Subalgebras
    Kurdachenko, I. A.
    Pypka, O. O.
    Subbotin, I. Ya
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (06) : 944 - 962
  • [2] Correction to: On Leibniz Algebras Whose Subalgebras Are Either Ideals or Self-Idealizing Subalgebras
    L. A. Kurdachenko
    O. O. Pypka
    I. Ya. Subbotin
    Ukrainian Mathematical Journal, 2022, 73 : 1339 - 1339
  • [3] On Leibniz Algebras Whose Subalgebras Are Either Ideals or Self-Idealizing Subalgebras (vol 73, pg 944, 2021)
    Kurdachenko, L. A.
    Pypka, O. O.
    Subbotin, I. Ya.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (08) : 1339 - 1339
  • [4] The Leibniz algebras whose subalgebras are ideals
    Kurdachenko, Leonid A.
    Semko, Nikolai N.
    Subbotin, Igor Ya.
    OPEN MATHEMATICS, 2017, 15 : 92 - 100
  • [5] On the structure of Leibniz algebras whose subalgebras are ideals or core-free
    Chupordia, V. A.
    Kurdachenko, L. A.
    Semko, N. N.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (02): : 180 - 194
  • [6] Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras
    Manuel Ceballos
    David A. Towers
    Mediterranean Journal of Mathematics, 2023, 20
  • [7] Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras
    Ceballos, Manuel
    Towers, David A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [8] LATTICES OF SUBALGEBRAS OF LEIBNIZ ALGEBRAS
    Barnes, Donald W.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4330 - 4335
  • [9] Fuzzy Leibniz Ideals and Fuzzy Leibniz Subalgebras
    Mansuroglu, Nil
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (03) : 387 - 400
  • [10] Subalgebras of free Leibniz algebras
    Mikhalev, AA
    Umirbaev, UU
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (02) : 435 - 446