On Leibniz Algebras whose Subalgebras are Either Ideals or Self-Idealizing Subalgebras

被引:0
|
作者
I. A. Kurdachenko
O. O. Pypka
I. Ya. Subbotin
机构
[1] O. Honchar Dnipro National University,
[2] Los Angeles National University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A subalgebra S of a Leibniz algebra L is called self-idealizing in L if it coincides with its idealizer IL(S). We study the structure of Leibniz algebras whose subalgebras are either ideals or self-idealizing subalgebras.
引用
收藏
页码:944 / 962
页数:18
相关论文
共 50 条
  • [21] Fuzzy Subalgebras and Ideals With Thresholds of Hilbert Algebras
    Iampan, Aiyared
    Jayaraman, P.
    Sudha, S. D.
    Rajesh, N.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [22] FALLING SUBALGEBRAS AND IDEALS IN BH-ALGEBRAS
    Kim, Eun Mi
    Ahn, Sun Shin
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2012, 19 (03): : 251 - 262
  • [23] A characterisation of Lie algebras using ideals and subalgebras
    Dotsenko, Vladimir
    Garcia-Martinez, Xabier
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2408 - 2423
  • [24] Fuzzy ideals and fuzzy subalgebras of Lie algebras
    Yehia, SE
    FUZZY SETS AND SYSTEMS, 1996, 80 (02) : 237 - 244
  • [25] Principal ideals in subalgebras of groupoid C*-algebras
    Krishnan, S
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (02) : 357 - 381
  • [26] Traces of maximal ideals of topological algebras in their subalgebras
    Abel, Mart
    Abel, Mati
    TURKISH JOURNAL OF MATHEMATICS, 2007, 31 (01) : 79 - 88
  • [27] Ideals in parabolic subalgebras of simple Lie algebras
    Chari, Vyjayanthi
    Dolbin, R. J.
    Ridenour, T.
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 47 - 60
  • [28] Leibniz algebras whose subideals are ideals
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya.
    Yashchuk, Viktoriia S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [29] Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Superalgebras
    Bouarroudj, Sofiane
    Calderon, Antonio J.
    Fernandez Ouaridi, Amir
    Navarro, Rosa Maria
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [30] On Leibniz Algebras Whose Centralizers Are Ideals
    Das, Pratulananda
    Saha, Ripan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1555 - 1571