On the structure of Leibniz algebras whose subalgebras are ideals or core-free

被引:0
|
作者
Chupordia, V. A. [1 ]
Kurdachenko, L. A. [1 ]
Semko, N. N. [2 ]
机构
[1] Oles Honchar Dnipro Natl Univ, 72 Gagarin Ave, UA-49010 Dnipro, Ukraine
[2] Univ State Fiscal Serv Ukraine, 31 Univ Skaya Str, UA-08205 Irpin, Ukraine
来源
ALGEBRA AND DISCRETE MATHEMATICS | 2020年 / 29卷 / 02期
关键词
Leibniz algebra; Lie algebra; ideal; core-free subalgebras; monolithic algebra; extraspecial algebra; CENTRAL SERIES;
D O I
10.12958/adm1533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: [[a, b], c] = [a, [b, c]] - [b, [a, c]] for all a, b, c is an element of L. Leibniz algebras are generalizations of Lie algebras. A subalgebra S of a Leibniz algebra L is called a core-free, if S does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
引用
收藏
页码:180 / 194
页数:15
相关论文
共 50 条
  • [1] The Leibniz algebras whose subalgebras are ideals
    Kurdachenko, Leonid A.
    Semko, Nikolai N.
    Subbotin, Igor Ya.
    OPEN MATHEMATICS, 2017, 15 : 92 - 100
  • [2] On Leibniz Algebras whose Subalgebras are Either Ideals or Self-Idealizing Subalgebras
    I. A. Kurdachenko
    O. O. Pypka
    I. Ya. Subbotin
    Ukrainian Mathematical Journal, 2021, 73 : 944 - 962
  • [3] On Leibniz Algebras whose Subalgebras are Either Ideals or Self-Idealizing Subalgebras
    Kurdachenko, I. A.
    Pypka, O. O.
    Subbotin, I. Ya
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (06) : 944 - 962
  • [4] Correction to: On Leibniz Algebras Whose Subalgebras Are Either Ideals or Self-Idealizing Subalgebras
    L. A. Kurdachenko
    O. O. Pypka
    I. Ya. Subbotin
    Ukrainian Mathematical Journal, 2022, 73 : 1339 - 1339
  • [5] Subalgebras of free Leibniz algebras
    Mikhalev, AA
    Umirbaev, UU
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (02) : 435 - 446
  • [6] Leibniz algebras whose subideals are ideals
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya.
    Yashchuk, Viktoriia S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [7] On Leibniz Algebras Whose Centralizers Are Ideals
    Das, Pratulananda
    Saha, Ripan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1555 - 1571
  • [8] On Leibniz Algebras Whose Centralizers Are Ideals
    Pratulananda Das
    Ripan Saha
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1555 - 1571
  • [9] On Leibniz Algebras Whose Subalgebras Are Either Ideals or Self-Idealizing Subalgebras (vol 73, pg 944, 2021)
    Kurdachenko, L. A.
    Pypka, O. O.
    Subbotin, I. Ya.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (08) : 1339 - 1339
  • [10] Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras
    Ceballos, Manuel
    Towers, David A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)