Right-angled Artin groups and curve graphs of nonorientable surfaces

被引:0
|
作者
Takuya Katayama
Erika Kuno
机构
[1] Gakushuin University,Department of Mathematics, Faculty of Science
[2] Osaka University,Department of Mathematics, Graduate School of Science
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Right-angled Artin groups; Curve graphs; Mapping class groups; Nonorientable surfaces; Two-sided curves; 20F36; 20F65; 20F67; 57K20;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a closed nonorientable surface with or without marked points. In this paper we prove that, for every finite full subgraph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document}, the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N. Here, Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} is the subgraph, induced by essential two-sided simple closed curves in N, of the ordinary curve graph C(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}(N)$$\end{document}. In addition, we show that there exists a finite graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} which is not a full subgraph of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} for some N, but the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N.
引用
收藏
相关论文
共 50 条