Learning to Generate Wasserstein Barycenters

被引:0
|
作者
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
机构
[1] Université de Lyon,INSA Lyon
[2] Université of Lyon,CNRS
[3] Université Bretagne Sud,CNRS, IRISA
关键词
Wasserstein barycenter; Optimal transport; Convolutional neural network; Color transfer;
D O I
暂无
中图分类号
学科分类号
摘要
Optimal transport is a notoriously difficult problem to solve numerically, with current approaches often remaining intractable for very large-scale applications such as those encountered in machine learning. Wasserstein barycenters—the problem of finding measures in-between given input measures in the optimal transport sense—are even more computationally demanding as it requires to solve an optimization problem involving optimal transport distances. By training a deep convolutional neural network, we improve by a factor of 80 the computational speed of Wasserstein barycenters over the fastest state-of-the-art approach on the GPU, resulting in milliseconds computational times on 512×512\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$512\times 512$$\end{document} regular grids. We show that our network, trained on Wasserstein barycenters of pairs of measures, generalizes well to the problem of finding Wasserstein barycenters of more than two measures. We demonstrate the efficiency of our approach for computing barycenters of sketches and transferring colors between multiple images.
引用
收藏
页码:354 / 370
页数:16
相关论文
共 50 条
  • [41] Computing Wasserstein Barycenters via Linear Programming
    Auricchio, Gennaro
    Bassetti, Federico
    Gualandi, Stefano
    Veneroni, Marco
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2019, 2019, 11494 : 355 - 363
  • [42] A fixed-point approach to barycenters in Wasserstein space
    Alvarez-Esteban, Pedro C.
    del Barrio, E.
    Cuesta-Albertos, J. A.
    Matran, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 744 - 762
  • [43] Discrete Wasserstein barycenters: optimal transport for discrete data
    Ethan Anderes
    Steffen Borgwardt
    Jacob Miller
    Mathematical Methods of Operations Research, 2016, 84 : 389 - 409
  • [44] Discrete Wasserstein barycenters: optimal transport for discrete data
    Anderes, Ethan
    Borgwardt, Steffen
    Miller, Jacob
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2016, 84 (02) : 389 - 409
  • [45] WASSERSTEIN BARYCENTERS IN THE MANIFOLD OF ALL POSITIVE DEFINITE MATRICES
    Nobari, Elham
    Kakavandi, Bijan Ahmadi
    QUARTERLY OF APPLIED MATHEMATICS, 2019, 77 (03) : 655 - 669
  • [46] Nonparametric and Regularized Dynamical Wasserstein Barycenters for Sequential Observations
    Cheng, Kevin C.
    Miller, Eric L.
    Hughes, Michael C.
    Aeron, Shuchin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 3164 - 3178
  • [47] Absolute Continuity of Wasserstein Barycenters Over Alexandrov Spaces
    Jiang, Yin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (05): : 1087 - 1108
  • [48] Automatic Text Evaluation through the Lens of Wasserstein Barycenters
    Colombo, Pierre
    Staerman, Guillaume
    Clavel, Chloe
    Piantanida, Pablo
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 10450 - 10466
  • [49] Sparse Wasserstein Barycenters and Application to Reduced Order Modeling
    Do, Minh-Hieu
    Feydy, Jean
    Mula, Olga
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
  • [50] Dynamical Wasserstein Barycenters for Time-series Modeling
    Cheng, Kevin C.
    Aeron, Shuchin
    Hughes, Michael C.
    Miller, Eric L.
    Advances in Neural Information Processing Systems, 2021, 33 : 27991 - 28003