Learning to Generate Wasserstein Barycenters

被引:0
|
作者
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
机构
[1] Université de Lyon,INSA Lyon
[2] Université of Lyon,CNRS
[3] Université Bretagne Sud,CNRS, IRISA
关键词
Wasserstein barycenter; Optimal transport; Convolutional neural network; Color transfer;
D O I
暂无
中图分类号
学科分类号
摘要
Optimal transport is a notoriously difficult problem to solve numerically, with current approaches often remaining intractable for very large-scale applications such as those encountered in machine learning. Wasserstein barycenters—the problem of finding measures in-between given input measures in the optimal transport sense—are even more computationally demanding as it requires to solve an optimization problem involving optimal transport distances. By training a deep convolutional neural network, we improve by a factor of 80 the computational speed of Wasserstein barycenters over the fastest state-of-the-art approach on the GPU, resulting in milliseconds computational times on 512×512\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$512\times 512$$\end{document} regular grids. We show that our network, trained on Wasserstein barycenters of pairs of measures, generalizes well to the problem of finding Wasserstein barycenters of more than two measures. We demonstrate the efficiency of our approach for computing barycenters of sketches and transferring colors between multiple images.
引用
收藏
页码:354 / 370
页数:16
相关论文
共 50 条
  • [31] Quantitative stability of barycenters in the Wasserstein space
    Guillaume Carlier
    Alex Delalande
    Quentin Mérigot
    Probability Theory and Related Fields, 2024, 188 : 1257 - 1286
  • [32] Sliced and Radon Wasserstein Barycenters of Measures
    Bonneel, Nicolas
    Rabin, Julien
    Peyre, Gabriel
    Pfister, Hanspeter
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) : 22 - 45
  • [33] Wasserstein Distances, Geodesics and Barycenters of Merge Trees
    Pont, Mathieu
    Vidal, Jules
    Delon, Julie
    Tierny, Julien
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) : 291 - 301
  • [34] Wasserstein Barycenters Are NP-Hard to Compute
    Altschuler, Jason M.
    Boix-Adsera, Enric
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (01): : 179 - 203
  • [35] Distributed Computation of Wasserstein Barycenters over Networks
    Uribe, Cesar A.
    Dvinskikh, Darina
    Dvurechensky, Pavel
    Gasnikov, Alexander
    Nedic, Angelia
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 6544 - 6549
  • [36] STATISTICAL INFERENCE FOR BURES-WASSERSTEIN BARYCENTERS
    Kroshnin, Alexey
    Spokoiny, Vladimir
    Suvorikova, Alexandra
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (03): : 1264 - 1298
  • [37] Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters
    Dvurechensky, Pavel
    Dvinskikh, Darina
    Gasnikov, Alexander
    Uribe, Cesar A.
    Nedic, Angelia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [38] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [39] Distributed Wasserstein Barycenters via Displacement Interpolation
    Cisneros-Velarde, Pedro
    Bullo, Francesco
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (02): : 785 - 795
  • [40] NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS
    Carlier, Guillaume
    Oberman, Adam
    Oudet, Edouard
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1621 - 1642