Learning to Generate Wasserstein Barycenters

被引:0
|
作者
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
机构
[1] Université de Lyon,INSA Lyon
[2] Université of Lyon,CNRS
[3] Université Bretagne Sud,CNRS, IRISA
关键词
Wasserstein barycenter; Optimal transport; Convolutional neural network; Color transfer;
D O I
暂无
中图分类号
学科分类号
摘要
Optimal transport is a notoriously difficult problem to solve numerically, with current approaches often remaining intractable for very large-scale applications such as those encountered in machine learning. Wasserstein barycenters—the problem of finding measures in-between given input measures in the optimal transport sense—are even more computationally demanding as it requires to solve an optimization problem involving optimal transport distances. By training a deep convolutional neural network, we improve by a factor of 80 the computational speed of Wasserstein barycenters over the fastest state-of-the-art approach on the GPU, resulting in milliseconds computational times on 512×512\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$512\times 512$$\end{document} regular grids. We show that our network, trained on Wasserstein barycenters of pairs of measures, generalizes well to the problem of finding Wasserstein barycenters of more than two measures. We demonstrate the efficiency of our approach for computing barycenters of sketches and transferring colors between multiple images.
引用
收藏
页码:354 / 370
页数:16
相关论文
共 50 条
  • [1] Learning to Generate Wasserstein Barycenters
    Lacombe, Julien
    Digne, Julie
    Courty, Nicolas
    Bonneel, Nicolas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (02) : 354 - 370
  • [2] Bayesian learning with Wasserstein barycenters*
    Backhoff-Veraguas, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    ESAIM-PROBABILITY AND STATISTICS, 2022, 26 : 436 - 472
  • [3] Stochastic Wasserstein Barycenters
    Claici, Sebastian
    Chien, Edward
    Solomon, Justin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [4] Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters
    Metelli, Alberto Maria
    Likmeta, Amarildo
    Restelli, Marcello
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] On the computation of Wasserstein barycenters
    Puccetti, Giovanni
    Rueschendorf, Ludger
    Vanduffel, Steven
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [6] BARYCENTERS IN THE WASSERSTEIN SPACE
    Agueh, Martial
    Carlier, Guillaume
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 904 - 924
  • [7] Primal Heuristics for Wasserstein Barycenters
    Bouchet, Pierre-Yves
    Gualandi, Stefano
    Rousseau, Louis-Martin
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2020, 2020, 12296 : 239 - 255
  • [8] Projection Robust Wasserstein Barycenters
    Huang, Minhui
    Ma, Shiqian
    Lai, Lifeng
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [9] Parallel Streaming Wasserstein Barycenters
    Staib, Matthew
    Claici, Sebastian
    Solomon, Justin
    Jegelka, Stefanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [10] Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
    Brogat-Motte, Luc
    Flamary, Remi
    Brouard, Celine
    Rousu, Juho
    d'Alche-Buc, Florence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,