Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [41] CUT-SETS IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Cote, B.
    Ewing, C.
    Huhn, M.
    Plaut, C. M.
    Weber, D.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2849 - 2861
  • [42] Analysis of Zagreb indices over zero-divisor graphs of commutative rings
    Aykac, Sumeyye
    Akgunes, Nihat
    Cevik, Ahmet Sinan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (06)
  • [43] ON ZERO-DIVISOR GRAPHS OF BOOLEAN RINGS
    Mohammadian, Ali
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 375 - 383
  • [44] On zero-divisor graphs of skew polynomial rings over non-commutative rings
    Hashemi, E.
    Amirjan, R.
    Alhevaz, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [45] THE ZERO-DIVISOR GRAPHS OF RINGS AND SEMIRINGS
    Dolzan, David
    Oblak, Polona
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (04)
  • [46] On zero-divisor graphs of finite rings
    Akbari, S.
    Mohammadian, A.
    JOURNAL OF ALGEBRA, 2007, 314 (01) : 168 - 184
  • [47] ZERO-DIVISOR GRAPHS FOR GROUP RINGS
    Aliniaeifard, Farid
    Li, Yuanlin
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) : 4790 - 4800
  • [48] CLASSIFICATION OF COMMUTATIVE ZERO-DIVISOR SEMIGROUP GRAPHS
    Demeyer, Lisa
    Jiang, Yunjiang
    Loszewski, Cleland
    Purdy, Erica
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (05) : 1481 - 1503
  • [49] Book thickness of toroidal zero-divisor graphs
    McKenzie T.
    Overbay S.
    Afrika Matematika, 2017, 28 (5-6) : 823 - 830
  • [50] On the global powerful alliance number of zero-divisor graphs of finite commutative rings
    El-Khabchi, Yassine
    Bouba, El Mehdi
    Koc, Suat
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (03)