Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [21] THE ZERO-DIVISOR GRAPH OF A COMMUTATIVE RING WITHOUT IDENTITY
    Anderson, David F.
    Weber, Darrin
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2018, 23 : 176 - 202
  • [22] Independent domination polynomial of zero-divisor graphs of commutative rings
    Gursoy, Necla Kircali
    Ulker, Alper
    Gursoy, Arif
    SOFT COMPUTING, 2022, 26 (15) : 6989 - 6997
  • [23] Upper dimension and bases of zero-divisor graphs of commutative rings
    Pirzada, S.
    Aijaz, M.
    Redmond, S. P.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 168 - 173
  • [24] Independent domination polynomial of zero-divisor graphs of commutative rings
    Necla Kırcalı Gürsoy
    Alper Ülker
    Arif Gürsoy
    Soft Computing, 2022, 26 : 6989 - 6997
  • [25] Central sets and radii of the zero-divisor graphs of commutative rings
    Redmond, Shane P.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2389 - 2401
  • [26] CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Axtell, M.
    Baeth, N.
    Stickles, J.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2179 - 2188
  • [27] Independent domination polynomial of zero-divisor graphs of commutative rings
    Gursoy, Necla Kircali
    Ulker, Alper
    Gursoy, Arif
    SOFT COMPUTING, 2022,
  • [28] The i-extended zero-divisor graphs of commutative rings
    Bennis, Driss
    El Alaoui, Brahim
    Fahid, Brahim
    Farnik, Michal
    L'hamri, Raja
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4661 - 4678
  • [29] ON COMPRESSED ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE LOCAL RINGS
    Zhuravlev, E., V
    Filina, O. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 (02): : 1531 - 1555
  • [30] On vertex connectivity of zero-divisor graphs of finite commutative rings
    Chattopadhyay, Sriparna
    Patra, Kamal Lochan
    Sahoo, Binod Kumar
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 955 - 969