Degree bounded bottleneck spanning trees in three dimensions

被引:0
|
作者
Patrick J. Andersen
Charl J. Ras
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
关键词
Minimum spanning trees; Bottleneck objective; Approximation algorithms; Discrete geometry; Bounded degree; Combinatorial optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum bottleneck spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. In this paper, we investigate the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.
引用
收藏
页码:457 / 491
页数:34
相关论文
共 50 条
  • [31] Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
    Sebastian M. Cioabă
    Xiaofeng Gu
    Czechoslovak Mathematical Journal, 2016, 66 : 913 - 924
  • [32] PLANAR BICHROMATIC BOTTLENECK SPANNING TREES
    Abu-Affash, A. Karim
    Bhore, Sujoy
    Carmi, Paz
    Mitchell, Joseph S. B.
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2021, 12 (01) : 109 - 127
  • [33] Approximating degree-bounded minimum spanning trees of directed acyclic graphs
    Li, Hengwu
    Liu, Zhendong
    Han, Huijian
    Journal of Computational Information Systems, 2010, 6 (07): : 2399 - 2406
  • [34] Three-dimensional drawings of bounded degree trees
    Frati, Fabrizio
    Di Battista, Giuseppe
    GRAPH DRAWING, 2007, 4372 : 89 - +
  • [35] Spanning trees with many leaves in graphs with minimum degree three
    Bonsma, Paul S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) : 920 - 937
  • [36] Bounded-degree minimum-radius spanning trees in wireless sensor networks
    An, Min Kyung
    Lam, Nhat X.
    Huynh, Dung T.
    Nguyen, Trac N.
    THEORETICAL COMPUTER SCIENCE, 2013, 498 : 46 - 57
  • [37] Spanning Trees with Bounded Total Excess
    Enomoto, Hikoe
    Ohnishi, Yukichika
    Ota, Katsuhiro
    ARS COMBINATORIA, 2011, 102 : 289 - 295
  • [38] Spanning trees with bounded degrees and leaves
    Kano, Mikio
    Yan, Zheng
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1583 - 1586
  • [39] Degree conditions and degree bounded trees
    Matsuda, Haruhide
    Matsumura, Hajime
    DISCRETE MATHEMATICS, 2009, 309 (11) : 3653 - 3658
  • [40] SPANNING-TREES IN 2 DIMENSIONS
    MANNA, SS
    DHAR, D
    MAJUMDAR, SN
    PHYSICAL REVIEW A, 1992, 46 (08): : R4471 - R4474