Degree bounded bottleneck spanning trees in three dimensions

被引:0
|
作者
Patrick J. Andersen
Charl J. Ras
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
关键词
Minimum spanning trees; Bottleneck objective; Approximation algorithms; Discrete geometry; Bounded degree; Combinatorial optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum bottleneck spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. In this paper, we investigate the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.
引用
收藏
页码:457 / 491
页数:34
相关论文
共 50 条
  • [11] Euclidean Bottleneck Bounded-Degree Spanning Tree Ratios
    Ahmad Biniaz
    Discrete & Computational Geometry, 2022, 67 : 311 - 327
  • [12] Euclidean Bottleneck Bounded-Degree Spanning Tree Ratios
    Biniaz, Ahmad
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 311 - 327
  • [13] Embedding nearly-spanning bounded degree trees
    Noga Alon
    Michael Krivelevich
    Benny Sudakov
    Combinatorica, 2007, 27 : 629 - 644
  • [14] Refuting a conjecture of Goemans on bounded degree spanning trees
    Chestnut, S.
    Nagele, M.
    Zenklusen, R.
    OPERATIONS RESEARCH LETTERS, 2016, 44 (06) : 766 - 771
  • [15] Embedding nearly-spanning bounded degree trees
    Alon, Noga
    Krivelevich, Michael
    Sudakov, Benny
    COMBINATORICA, 2007, 27 (06) : 629 - 644
  • [16] Universality for bounded degree spanning trees in randomly perturbed graphs
    Boettcher, Julia
    Han, Jie
    Kohayakawa, Yoshiharu
    Montgomery, Richard
    Parczyk, Olaf
    Person, Yury
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 854 - 864
  • [17] BOUNDED-DEGREE SPANNING TREES IN RANDOMLY PERTURBED GRAPHS
    Krivelevich, Michael
    Kwan, Matthew
    Sudakov, Benny
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 155 - 171
  • [18] Spanning Trees of Bounded Degree, Connectivity, Toughness, and the Spectrum of a Graph
    Duan, Cunxiang
    Wang, Ligong
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (01) : 185 - 196
  • [19] A note on graphs containing spanning trees with bounded leaf degree
    Lv, Xiaoyun
    Li, Jianxi
    Xu, Shou-Jun
    FILOMAT, 2024, 38 (29) : 10345 - 10350
  • [20] Near-optimal bounded-degree spanning trees
    J. C. Hansen
    E. Schmutz
    Algorithmica, 2001, 29 : 148 - 180