The geometric δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}-minimum spanning tree problem (δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}-minimum bottleneck spanning tree problem (δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}. In this paper, we investigate the δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math & Comp Sci, IL-69978 Tel Aviv, Israel
IAS, Princeton, NJ 08540 USATel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math & Comp Sci, IL-69978 Tel Aviv, Israel
Alon, Noga
Krivelevich, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math & Comp Sci, IL-69978 Tel Aviv, Israel
Krivelevich, Michael
Sudakov, Benny
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Math, Princeton, NJ 08544 USATel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math & Comp Sci, IL-69978 Tel Aviv, Israel
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-13997801 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-13997801 Tel Aviv, Israel
Krivelevich, Michael
Kwan, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Dept Math, CH-8092 Zurich, SwitzerlandTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-13997801 Tel Aviv, Israel
Kwan, Matthew
Sudakov, Benny
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Dept Math, CH-8092 Zurich, SwitzerlandTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-13997801 Tel Aviv, Israel
机构:
Northwestern Polytech Univ, Sch Math & Stat, Xian, Peoples R China
Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian, Peoples R ChinaNorthwestern Polytech Univ, Sch Math & Stat, Xian, Peoples R China
Duan, Cunxiang
Wang, Ligong
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Polytech Univ, Sch Math & Stat, Xian, Peoples R China
Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian, Peoples R ChinaNorthwestern Polytech Univ, Sch Math & Stat, Xian, Peoples R China