It follows from a theorem of Gromov that the stable systolic category \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm cat}_{\rm stsys} M$$\end{document} of a closed manifold M is bounded from below by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm cl}_{\mathbb{Q}} M$$\end{document}, the rational cup-length of M [Ka07]. We study the inequality in the opposite direction. In particular, combining our results with Gromov’s theorem, we prove the equality \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm cat}_{\rm stsys} M = {\rm cl}_{\mathbb{Q}} M$$\end{document} for simply connected manifolds of dimension ≤ 7.
机构:
Comenius Univ, Fac Math Phys & Informat, Dept Algebra Geometry & Math Educ, SK-84248 Bratislava 4, SlovakiaComenius Univ, Fac Math Phys & Informat, Dept Algebra Geometry & Math Educ, SK-84248 Bratislava 4, Slovakia