A quantum cup-length estimate for symplectic fixed points

被引:0
|
作者
Matthias Schwarz
机构
[1] Department of Mathematics,
[2] Stanford University,undefined
[3] Stanford,undefined
[4] CA 94305,undefined
[5] USA (E-mail address: schwarz@math.stanford.edu),undefined
来源
Inventiones mathematicae | 1998年 / 133卷
关键词
Manifold; Symplectic Manifold; Cohomology Ring; Quantum Cohomology; Weakly Monotone;
D O I
暂无
中图分类号
学科分类号
摘要
A new lower bound for the number of fixed points of Hamiltonian automorphisms of closed symplectic manifolds (M,ω) is established. The new estimate extends the previously known estimates to the class of weakly monotone symplectic manifolds. We prove for arbitrary closed symplectic manifolds with rational symplectic class that the cup-length estimate holds true if the Hofer energy of the Hamiltonian automorphism is sufficiently small. For arbitrary energy and on weakly monotone symplectic manifolds we define an analogon to the cup-length based on the quantum cohomology ring of (M,ω) providing a quantum cup-length estimate.
引用
收藏
页码:353 / 397
页数:44
相关论文
共 50 条
  • [1] A quantum cup-length estimate for symplectic fixed points
    Schwarz, M
    INVENTIONES MATHEMATICAE, 1998, 133 (02) : 353 - 397
  • [2] Cup-length estimate for Lagrangian intersections
    Liu, CG
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (01) : 57 - 76
  • [3] The Conley index, cup-length and bifurcation
    Zdzisław Dzedzej
    Kazimierz Gȩba
    Wojciech Uss
    Journal of Fixed Point Theory and Applications, 2011, 10 : 233 - 252
  • [4] On maximality of the cup-length of flag manifolds
    Z. Z. Petrović
    B. I. Prvulović
    M. Radovanović
    Acta Mathematica Hungarica, 2016, 149 : 448 - 461
  • [5] The Conley index, cup-length and bifurcation
    Dzedzej, Zdzislaw
    Geba, Kazimierz
    Uss, Wojciech
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 10 (02) : 233 - 252
  • [6] On maximality of the cup-length of flag manifolds
    Petrovic, Z. Z.
    Prvulovic, B. I.
    Radovanovic, M.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (02) : 448 - 461
  • [7] Stable systolic category of manifolds and the cup-length
    Alexander N. Dranishnikov
    Yuli B. Rudyak
    Journal of Fixed Point Theory and Applications, 2009, 6
  • [8] Bounds for the cup-length of Poincare spaces and their applications
    Korbas, Julius
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) : 2976 - 2986
  • [9] On the cup-length of certain classes of flag manifolds
    L’. Balko
    J. Lörinc
    Acta Mathematica Hungarica, 2019, 159 : 638 - 652
  • [10] ON THE CUP-LENGTH OF CERTAIN CLASSES OF FLAG MANIFOLDS
    Balko, L.
    Lorinc, J.
    ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 638 - 652