Stable systolic category of manifolds and the cup-length

被引:0
|
作者
Alexander N. Dranishnikov
Yuli B. Rudyak
机构
[1] University of Florida,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2009年 / 6卷
关键词
Primary 55M30; Secondary 53C23, 57N65; Cup-length; Lusternik–Schnirelmann category; systoles; systolic category;
D O I
暂无
中图分类号
学科分类号
摘要
It follows from a theorem of Gromov that the stable systolic category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm cat}_{\rm stsys} M$$\end{document} of a closed manifold M is bounded from below by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm cl}_{\mathbb{Q}} M$$\end{document}, the rational cup-length of M [Ka07]. We study the inequality in the opposite direction. In particular, combining our results with Gromov’s theorem, we prove the equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm cat}_{\rm stsys} M = {\rm cl}_{\mathbb{Q}} M$$\end{document} for simply connected manifolds of dimension ≤ 7.
引用
收藏
相关论文
共 50 条