We consider a free boundary problem for a system of partial differential equations, which arise in a model of cell cycle with a free boundary. For the quasi steady state system, it depends on a positive parameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}, which describes the signals from the microenvironment. Upon discretizing this model, we obtain a family of polynomial systems parameterized by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}. We numerically find that there exists a radially-symmetric stationary solution with boundary \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r = R$$\end{document} for any given positive number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R$$\end{document} by using numerical algebraic geometry method. By homotopy tracking with respect to the parameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}, there exist branches of symmetry-breaking stationary solutions. Moreover, we proposed a numerical algorithm based on Crandall–Rabinowitz theorem to numerically verify the bifurcation points. By continuously changing \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document} using a homotopy, we are able to compute non-radially symmetric solutions. We additionally discuss control function \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}.
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
Zhou, Fujun
Cui, Shangbin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Inst Math, Guangzhou 510275, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
机构:
Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
Zhang, Yarong
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
He, Yinnian
Chen, Hongbin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
Zhou, Fujun
Wu, Junde
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China