Cell Cycle Control and Bifurcation for a Free Boundary Problem Modeling Tissue Growth

被引:0
|
作者
Wenrui Hao
Bei Hu
Andrew J. Sommese
机构
[1] University of Notre Dame,Department of Applied and Computational Mathematics and Statistics
来源
关键词
Bifurcation; Free boundary problem; Polynomial systems; Homotopy continuation; Cell cycle;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a free boundary problem for a system of partial differential equations, which arise in a model of cell cycle with a free boundary. For the quasi steady state system, it depends on a positive parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, which describes the signals from the microenvironment. Upon discretizing this model, we obtain a family of polynomial systems parameterized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. We numerically find that there exists a radially-symmetric stationary solution with boundary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = R$$\end{document} for any given positive number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} by using numerical algebraic geometry method. By homotopy tracking with respect to the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, there exist branches of symmetry-breaking stationary solutions. Moreover, we proposed a numerical algorithm based on Crandall–Rabinowitz theorem to numerically verify the bifurcation points. By continuously changing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} using a homotopy, we are able to compute non-radially symmetric solutions. We additionally discuss control function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}.
引用
收藏
页码:350 / 365
页数:15
相关论文
共 50 条