Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term

被引:0
|
作者
Qilin Xie
Huafeng Xiao
机构
[1] Guangdong University of Technology,School of Mathematics and Statistics
[2] Guangzhou University,School of Mathematics and Information Science
来源
关键词
Solutions; Discrete Schrödinger equations; Kirchhoff type;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider the following discrete Schrödinger equations −(a+b∑k∈Z|Δuk−1|2)Δ2uk−1+Vkuk=fk(uk)k∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$\end{document} where a, b are two positive constants and V={Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V=\{V_{k}\}$\end{document} is a positive potential. Δuk−1=uk−uk−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u_{k-1}=u_{k}-u_{k-1}$\end{document} and Δ2=Δ(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta ^{2}=\Delta (\Delta )$\end{document} is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities {fk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{f_{k}\}$\end{document} satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.
引用
收藏
相关论文
共 50 条
  • [41] Multiple solutions of discrete Schrödinger equations with growing potentials
    Liqian Jia
    Guanwei Chen
    Advances in Difference Equations, 2016
  • [42] Standing Waves Solutions for the Discrete Schrödinger Equations with Resonance
    Zhenguo Wang
    Qiuying Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [43] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [44] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [45] Infinitely Many Solutions for Impulsive Nonlocal Elastic Beam Equations
    Ghasem A. Afrouzi
    Shahin Moradi
    Giuseppe Caristi
    Differential Equations and Dynamical Systems, 2022, 30 : 287 - 300
  • [46] Infinitely Many Solutions for Impulsive Nonlocal Elastic Beam Equations
    Afrouzi, Ghasem A.
    Moradi, Shahin
    Caristi, Giuseppe
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (02) : 287 - 300
  • [47] Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations
    Guan, Liang
    Geng, Xianguo
    Geng, Xue
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [48] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Chen, Lijuan
    Chen, Caisheng
    Chen, Qiang
    Wei, Yunfeng
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [49] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Lijuan Chen
    Caisheng Chen
    Qiang Chen
    Yunfeng Wei
    Boundary Value Problems, 2024
  • [50] Infinitely Many Sign-Changing Solutions for a SchröDinger Equation With Competing Potentials
    Wu, Ke
    Cheng, Kaijing
    Zhou, Fen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6918 - 6929