Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term

被引:0
|
作者
Qilin Xie
Huafeng Xiao
机构
[1] Guangdong University of Technology,School of Mathematics and Statistics
[2] Guangzhou University,School of Mathematics and Information Science
来源
关键词
Solutions; Discrete Schrödinger equations; Kirchhoff type;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider the following discrete Schrödinger equations −(a+b∑k∈Z|Δuk−1|2)Δ2uk−1+Vkuk=fk(uk)k∈Z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$\end{document} where a, b are two positive constants and V={Vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V=\{V_{k}\}$\end{document} is a positive potential. Δuk−1=uk−uk−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta u_{k-1}=u_{k}-u_{k-1}$\end{document} and Δ2=Δ(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta ^{2}=\Delta (\Delta )$\end{document} is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities {fk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{f_{k}\}$\end{document} satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.
引用
收藏
相关论文
共 50 条
  • [21] Normalized solutions for the discrete Schrödinger equations
    Qilin Xie
    Huafeng Xiao
    Boundary Value Problems, 2023
  • [22] Infinitely many solutions for a nonlinear Schrödinger equation with general nonlinearity
    Yohei Sato
    Masataka Shibata
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [23] Infinitely many sign-changing solutions for a Schrö dinger equation
    Aixia Qian
    Advances in Difference Equations, 2011
  • [24] Infinitely many dichotomous solutions for the Schrödinger-Poisson system
    He, Yuke
    Li, Benniao
    Long, Wei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (09) : 2049 - 2070
  • [25] Infinitely many dichotomous solutions for the Schr?dinger-Poisson system
    Yuke He
    Benniao Li
    Wei Long
    ScienceChina(Mathematics), 2024, 67 (09) : 2049 - 2070
  • [26] Infinitely Many Solutions for Schr?dinger–Choquard–Kirchhoff Equations Involving the Fractional p-Laplacian
    Li WANG
    Tao HAN
    Ji Xiu WANG
    Acta Mathematica Sinica,English Series, 2021, (02) : 315 - 332
  • [27] Infinitely many solutions for a class of fractional Schrödinger equations with sign-changing weight functions
    Yongpeng Chen
    Baoxia Jin
    Boundary Value Problems, 2022
  • [28] Least energy solutions to a class of nonlocal Schrådinger equations
    Zhang, Yong-Chao
    AIMS MATHEMATICS, 2024, 9 (08): : 20763 - 20772
  • [29] Solutions and connections of nonlocal derivative nonlinear Schrödinger equations
    Ying Shi
    Shou-Feng Shen
    Song-Lin Zhao
    Nonlinear Dynamics, 2019, 95 : 1257 - 1267
  • [30] Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity
    Jiameng Li
    Huiwen Chen
    Zhimin He
    Zigen Ouyang
    Boundary Value Problems, 2023