Clar and Fries numbers for benzenoids

被引:0
|
作者
Jack E. Graver
Elizabeth J. Hartung
Ahmed Y. Souid
机构
[1] Syracuse University,
[2] Massachusetts College of Liberal Arts,undefined
来源
关键词
Benzenoids; Fullerenes; Conjugated 6-circuits; Fries structure; Clar structure; Kekulé structure;
D O I
暂无
中图分类号
学科分类号
摘要
A Kekulé structure of a benzenoid or a fullerene Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a set of edges K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} such that each vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is incident with exactly one edge in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The set of faces in Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} that have exactly three edges in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} are called the benzene faces of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The Fries number of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is the maximum number of benzene faces over all possible Kekulé structures for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. The Clar number is the maximum number of independent benzene faces over all possible Kekulé structures for Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. It is often assumed, but never proved, that some set of independent benzene faces giving the Clar number is a subset of a set of benzene faces giving the Fries number. In Hartung (The Clar structure of fullerenes, Ph.D. Dissertation. Syracuse University, 2012) it is shown that this assumption is false for a large class of fullerenes. In this paper, we prove that this assumption is valid for a large a class of benzenoids.
引用
收藏
页码:1981 / 1989
页数:8
相关论文
共 50 条
  • [1] Clar and Fries numbers for benzenoids
    Graver, Jack E.
    Hartung, Elizabeth J.
    Souid, Ahmed Y.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 1981 - 1989
  • [2] Pairwise Disagreements of Kekule, Clar, and Fries Numbers for Benzenoids: A Mathematical and Computational Investigation
    Chapman, James
    Foos, Judith
    Hartung, Elizabeth J.
    Nelson, Andrew
    Williams, Aaron
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 80 (01) : 189 - 206
  • [3] A network flow approach to a common generalization of Clar and Fries numbers
    Berczi-Kovacs, Erika
    Frank, Andras
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [4] Clar Theory for Molecular Benzenoids
    Misra, Anirban
    Klein, D. J.
    Morikawa, T.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (06): : 1151 - 1158
  • [5] CLAR STRUCTURES IN FRACTAL BENZENOIDS
    PLAVSIC, D
    TRINAJSTIC, N
    KLEIN, DJ
    CROATICA CHEMICA ACTA, 1992, 65 (02) : 279 - 284
  • [6] Clar Theory for Radical Benzenoids
    Misra, Anirban
    Schmalz, T. G.
    Klein, D. J.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (12) : 2670 - 2676
  • [7] ON CONSTRUCTION OF CLAR STRUCTURES FOR LARGE BENZENOIDS
    RANDIC, M
    HOSOYA, H
    NAKADA, K
    POLYCYCLIC AROMATIC COMPOUNDS, 1995, 4 (04) : 249 - 269
  • [8] Clar Theory for Hexagonal Benzenoids with Corner Defects
    He, Bing-Hau
    Witek, Henryk A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (01) : 121 - 140
  • [9] The Clar and Fries structures of a fullerene I
    Graver, Jack E.
    Hartung, Elizabeth J.
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 112 - 125
  • [10] Counterexamples to a proposed algorithm for Fries structures of benzenoids
    Fowler, Patrick W.
    Myrvold, Wendy
    Bird, William H.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (09) : 2408 - 2426