A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条
  • [1] A note on orientation and chromatic number of graphs
    Zaker, Manouchehr
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 605 - 611
  • [2] A Note on Star Chromatic Number of Graphs
    Hong Yong FUDe Zheng XIE College of Mathematics and StatisticsChongqing UniversityChongqing PRChinaCollege of Economics and Business AdministrationChongqing UniversityChongqing PRChina
    数学研究与评论, 2010, 30 (05) : 841 - 844
  • [3] A Note on Star Chromatic Number of Graphs
    Hong Yong FU1
    2.College of Economics and Business Administration
    Journal of Mathematical Research with Applications, 2010, (05) : 841 - 844
  • [4] A note on chromatic number and connectivity of infinite graphs
    Péter Komjáth
    Israel Journal of Mathematics, 2013, 196 : 499 - 506
  • [5] A note on chromatic number and connectivity of infinite graphs
    Komjath, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 196 (01) : 499 - 506
  • [6] Note on incidence chromatic number of subquartic graphs
    Petr Gregor
    Borut Lužar
    Roman Soták
    Journal of Combinatorial Optimization, 2017, 34 : 174 - 181
  • [7] Note on incidence chromatic number of subquartic graphs
    Gregor, Petr
    Luzar, Borut
    Sotak, Roman
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (01) : 174 - 181
  • [8] A Note on the b-Chromatic Number of Corona of Graphs
    Lisna, P. C.
    Sunitha, M. S.
    JOURNAL OF INTERCONNECTION NETWORKS, 2015, 15 (1-2)
  • [10] A NOTE ON THE THUE CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCTS OF GRAPHS
    Peterin, Iztok
    Schreyer, Jens
    Skrabul'akova, Erika Feckova
    Taranenko, Andrej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (03) : 635 - 643