Group Action;
Direct Summand;
Braid Group;
Cartan Matrix;
Coherent Sheave;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that the operation of the braid group on the set of complete exceptional sequences in the category of coherent sheaves on an exceptional curve \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \mathbb{X} $\end{document} over a field k is transitive. As a consequence the list of endomorphism skew-fields of the indecomposable direct summands of a tilting complex is a derived invariant. Furthermore, we apply the result in order to establish a bijection (which is compatible with the K-theory) between the sets of translation classes of exceptional objects in the derived categories of two derived-canonical algebras with the same Cartan matrix, but which are defined over possibly distinct fields.
机构:
Univ Virginia, Dept Math, Charlottesville, VA 22904 USAUniv Virginia, Dept Math, Charlottesville, VA 22904 USA
Qi, You
Sussan, Joshua
论文数: 0引用数: 0
h-index: 0
机构:
CUNY Medgar Evers, Dept Math, Brooklyn, NY 11225 USA
CUNY, Grad Ctr, Math Program, New York, NY 10016 USAUniv Virginia, Dept Math, Charlottesville, VA 22904 USA
机构:
Kyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan
Kyoto Univ, Res Inst Math Sci, Sakyo Ku, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
Korea Inst Adv Study, Cheongryangri Dong 207-43, Seoul 02455, South KoreaKyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan
Kashiwara, Masaki
Kim, Myungho
论文数: 0引用数: 0
h-index: 0
机构:
Kyung Hee Univ, Dept Math, 26 Kyunghee Daero, Seoul 02447, South KoreaKyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan
Kim, Myungho
Oh, Se-jin
论文数: 0引用数: 0
h-index: 0
机构:
Ewha Womans Univ, Dept Math, 52 Ewhayeodae Gil, Seoul 03760, South KoreaKyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan