Cohomology of Pure Braid Groups of exceptional cases

被引:12
|
作者
Settepanella, Simona [1 ]
机构
[1] Scuola Super Sant Anna, LEM, I-56127 Pisa, Italy
关键词
Pure braid groups; Arrangements; Cohomology; Local coefficients; Milnor fiber; HYPERPLANES; HOMOLOGY; ARRANGEMENTS; COMPLEMENTS;
D O I
10.1016/j.topol.2008.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the ring R := Q vertical bar tau. tau(-1)vertical bar of Laurent polynomials in the variable tau. The Artin's Pure Braid Groups (or Generalized Pure Braid Groups) act over R. where the action of every standard generator is the multiplication by tau. In this paper we consider the cohomology of these groups with coefficients in the module R (it is well known that such cohomology is strictly related to the untwisted integral cohomology, of the Milnor fibration naturally associated to the reflection arrangement). We compute this cohomology for the cases I(2)(m). H(3), H(4), F(4) and An with 1 <= n <= 7. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1008 / 1012
页数:5
相关论文
共 50 条
  • [1] On the Cohomology with local coefficients of Pure Braid Groups
    Settepanella, Simona
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 211 - 230
  • [2] The center of some braid groups and the Farrell cohomology of certain pure mapping class groups
    Chen, Yu Qing
    Glover, Henry H.
    Jensen, Craig A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1987 - 2006
  • [3] On the cohomology rings of tree braid groups
    Farley, Daniel
    Sabalka, Lucas
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) : 53 - 71
  • [4] Arithmetic properties of the cohomology of braid groups
    De Concini, C
    Procesi, C
    Salvetti, M
    TOPOLOGY, 2001, 40 (04) : 739 - 751
  • [5] Cohomology of braid groups with nontrivial coefficients
    Markaryan, NS
    MATHEMATICAL NOTES, 1996, 59 (5-6) : 611 - 617
  • [6] A stability-like theorem for cohomology of pure braid groups of the series A, B and D
    Settepanella, S
    TOPOLOGY AND ITS APPLICATIONS, 2004, 139 (1-3) : 37 - 47
  • [7] Explicit presentations for exceptional braid groups
    Bessis, D
    Michel, J
    EXPERIMENTAL MATHEMATICS, 2004, 13 (03) : 257 - 266
  • [8] Exceptional sequences, braid groups and clusters
    Igusa, Kiyoshi
    GROUPS, ALGEBRAS AND APPLICATIONS, 2011, 537 : 227 - 240
  • [9] Automorphisms of pure braid groups
    Bardakov, Valeriy G.
    Neshchadim, Mikhail, V
    Singh, Mahender
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01): : 1 - 19
  • [10] Presentation of pure braid groups
    Digne, F
    Gomi, Y
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (04) : 609 - 623