The braid group action for exceptional curves

被引:0
|
作者
D. Kussin
H. Meltzer
机构
[1] Fachbereich 17 Mathematik,
[2] Universität Paderborn,undefined
[3] D–33095 Paderborn,undefined
[4] Germany¶ e-mail: dirk@math.uni-paderborn.de,undefined
[5] Fachbereich 17 Mathematik,undefined
[6] Universität Paderborn,undefined
[7] D–33095 Paderborn,undefined
[8] Germany,undefined
来源
Archiv der Mathematik | 2002年 / 79卷
关键词
Group Action; Direct Summand; Braid Group; Cartan Matrix; Coherent Sheave;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the operation of the braid group on the set of complete exceptional sequences in the category of coherent sheaves on an exceptional curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{X} $\end{document} over a field k is transitive. As a consequence the list of endomorphism skew-fields of the indecomposable direct summands of a tilting complex is a derived invariant. Furthermore, we apply the result in order to establish a bijection (which is compatible with the K-theory) between the sets of translation classes of exceptional objects in the derived categories of two derived-canonical algebras with the same Cartan matrix, but which are defined over possibly distinct fields.
引用
收藏
页码:335 / 344
页数:9
相关论文
共 50 条
  • [1] The braid group action for exceptional curves
    Kussin, D
    Meltzer, H
    ARCHIV DER MATHEMATIK, 2002, 79 (05) : 335 - 344
  • [2] On the Braid Group Action on Exceptional Sequences for Weighted Projective Lines
    Alvares, Edson Ribeiro
    Marcos, Eduardo Nascimento
    Meltzer, Hagen
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (01) : 897 - 909
  • [3] On the Braid Group Action on Exceptional Sequences for Weighted Projective Lines
    Edson Ribeiro Alvares
    Eduardo Nascimento Marcos
    Hagen Meltzer
    Algebras and Representation Theory, 2024, 27 : 897 - 909
  • [4] A virtual geometric action of a braid group
    Barre, Sylvain
    Pichot, Mikael
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (02): : 307 - 318
  • [5] Braid group action and canonical bases
    Lusztig, G
    ADVANCES IN MATHEMATICS, 1996, 122 (02) : 237 - 261
  • [6] A virtual geometric action of a braid group
    Sylvain Barré
    Mikaël Pichot
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 307 - 318
  • [7] Braid Group Action on Affine Yangian
    Kodera, Ryosuke
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
  • [8] Braid group action on extended crystals *
    Park, Euiyong
    ADVANCES IN MATHEMATICS, 2023, 429
  • [9] The braid group action on quantum queer superalgebra
    Chen, Jianmin
    Li, Zhenhua
    Zhu, Hongying
    JOURNAL OF ALGEBRA, 2025, 666 : 169 - 212
  • [10] BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS
    BECK, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) : 555 - 568